Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon EMR stands as the leading cloud-based big data solution for handling extensive datasets through popular open-source frameworks like Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. This platform enables you to conduct Petabyte-scale analyses at a cost that is less than half of traditional on-premises systems and delivers performance more than three times faster than typical Apache Spark operations. For short-duration tasks, you have the flexibility to quickly launch and terminate clusters, incurring charges only for the seconds the instances are active. In contrast, for extended workloads, you can establish highly available clusters that automatically adapt to fluctuating demand. Additionally, if you already utilize open-source technologies like Apache Spark and Apache Hive on-premises, you can seamlessly operate EMR clusters on AWS Outposts. Furthermore, you can leverage open-source machine learning libraries such as Apache Spark MLlib, TensorFlow, and Apache MXNet for data analysis. Integrating with Amazon SageMaker Studio allows for efficient large-scale model training, comprehensive analysis, and detailed reporting, enhancing your data processing capabilities even further. This robust infrastructure is ideal for organizations seeking to maximize efficiency while minimizing costs in their data operations.
Description
You have the ability to deploy clusters as needed and automatically manage their scaling, allowing you to concentrate solely on processing, analyzing, and reporting big data. Leveraging years of experience in massively distributed computing, our operations team expertly handles the intricacies of cluster management. During peak demand, clusters can be automatically expanded to enhance computing power, while they can be contracted during quieter periods to minimize costs. A user-friendly management console is available to simplify tasks such as cluster oversight, template customization, task submissions, and monitoring of alerts. By integrating with the BCC, it enables businesses to focus on their core operations during busy times while assisting the BMR in processing big data during idle periods, ultimately leading to reduced overall IT costs. This seamless integration not only streamlines operations but also enhances efficiency across the board.
API Access
Has API
API Access
Has API
Integrations
AWS App Mesh
AWS Data Exchange
AWS Data Pipeline
AWS Lake Formation
Apache Hive
Apache Spark
Data Virtuality
EC2 Spot
Feast
Hadoop
Integrations
AWS App Mesh
AWS Data Exchange
AWS Data Pipeline
AWS Lake Formation
Apache Hive
Apache Spark
Data Virtuality
EC2 Spot
Feast
Hadoop
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/emr/
Vendor Details
Company Name
Baidu AI Cloud
Founded
2000
Country
China
Website
intl.cloud.baidu.com/product/bmr.html
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates