Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning.

Description

You can develop on your laptop, then scale the same Python code elastically across hundreds or GPUs on any cloud. Ray converts existing Python concepts into the distributed setting, so any serial application can be easily parallelized with little code changes. With a strong ecosystem distributed libraries, scale compute-heavy machine learning workloads such as model serving, deep learning, and hyperparameter tuning. Scale existing workloads (e.g. Pytorch on Ray is easy to scale by using integrations. Ray Tune and Ray Serve native Ray libraries make it easier to scale the most complex machine learning workloads like hyperparameter tuning, deep learning models training, reinforcement learning, and training deep learning models. In just 10 lines of code, you can get started with distributed hyperparameter tune. Creating distributed apps is hard. Ray is an expert in distributed execution.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon EKS
Amazon SageMaker
Amazon Web Services (AWS)
PyTorch
TensorFlow
AWS Batch
AWS Neuron
Amazon EC2 Capacity Blocks for ML
Amazon EC2 G5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Azure Kubernetes Service (AKS)
Dask
Domino Enterprise MLOps Platform
Feast
Kubernetes
MLflow
Snowflake
Union Cloud

Integrations

Amazon EKS
Amazon SageMaker
Amazon Web Services (AWS)
PyTorch
TensorFlow
AWS Batch
AWS Neuron
Amazon EC2 Capacity Blocks for ML
Amazon EC2 G5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Azure Kubernetes Service (AKS)
Dask
Domino Enterprise MLOps Platform
Feast
Kubernetes
MLflow
Snowflake
Union Cloud

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/instance-types/trn2/

Vendor Details

Company Name

Anyscale

Founded

2019

Country

United States

Website

ray.io

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services

Alternatives

Vertex AI Reviews

Vertex AI

Google
AWS Neuron Reviews

AWS Neuron

Amazon Web Services