Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.

Description

AI Infrastructure Virtualization Software. Enhance oversight and management of AI tasks to optimize GPU usage. Run:AI has pioneered the first virtualization layer specifically designed for deep learning training models. By decoupling workloads from the underlying hardware, Run:AI establishes a collective resource pool that can be allocated as needed, ensuring that valuable GPU resources are fully utilized. This approach allows for effective management of costly GPU allocations. With Run:AI’s scheduling system, IT departments can direct, prioritize, and synchronize computational resources for data science projects with overarching business objectives. Advanced tools for monitoring, job queuing, and the automatic preemption of tasks according to priority levels provide IT with comprehensive control over GPU resource utilization. Furthermore, by forming a versatile ‘virtual resource pool,’ IT executives can gain insights into their entire infrastructure’s capacity and usage, whether hosted on-site or in the cloud, thus facilitating more informed decision-making. This comprehensive visibility ultimately drives efficiency and enhances resource management.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Neuron
AWS Nitro System
AWS Trainium
Amazon EC2
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Amazon EKS
Amazon Elastic Container Service (Amazon ECS)
Amazon SageMaker
Amazon Web Services (AWS)
Greenovative
HPE Ezmeral
PyTorch
TensorFlow

Integrations

AWS Neuron
AWS Nitro System
AWS Trainium
Amazon EC2
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Amazon EKS
Amazon Elastic Container Service (Amazon ECS)
Amazon SageMaker
Amazon Web Services (AWS)
Greenovative
HPE Ezmeral
PyTorch
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/capacityblocks/

Vendor Details

Company Name

Run:AI

Founded

2018

Country

Israel

Website

www.run.ai/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Virtualization

Archiving & Retention
Capacity Monitoring
Data Mobility
Desktop Virtualization
Disaster Recovery
Namespace Management
Performance Management
Version Control
Virtual Machine Monitoring

Alternatives

Alternatives