Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon EC2 Capacity Blocks for Machine Learning allow users to secure accelerated computing instances within Amazon EC2 UltraClusters specifically for their machine learning tasks. This service encompasses a variety of instance types, including Amazon EC2 P5en, P5e, P5, and P4d, which utilize NVIDIA H200, H100, and A100 Tensor Core GPUs, along with Trn2 and Trn1 instances that leverage AWS Trainium. Users can reserve these instances for periods of up to six months, with cluster sizes ranging from a single instance to 64 instances, translating to a maximum of 512 GPUs or 1,024 Trainium chips, thus providing ample flexibility to accommodate diverse machine learning workloads. Additionally, reservations can be arranged as much as eight weeks ahead of time. By operating within Amazon EC2 UltraClusters, Capacity Blocks facilitate low-latency and high-throughput network connectivity, which is essential for efficient distributed training processes. This configuration guarantees reliable access to high-performance computing resources, empowering you to confidently plan your machine learning projects, conduct experiments, develop prototypes, and effectively handle anticipated increases in demand for machine learning applications. Furthermore, this strategic approach not only enhances productivity but also optimizes resource utilization for varying project scales.
Description
NVIDIA TensorRT is a comprehensive suite of APIs designed for efficient deep learning inference, which includes a runtime for inference and model optimization tools that ensure minimal latency and maximum throughput in production scenarios. Leveraging the CUDA parallel programming architecture, TensorRT enhances neural network models from all leading frameworks, adjusting them for reduced precision while maintaining high accuracy, and facilitating their deployment across a variety of platforms including hyperscale data centers, workstations, laptops, and edge devices. It utilizes advanced techniques like quantization, fusion of layers and tensors, and precise kernel tuning applicable to all NVIDIA GPU types, ranging from edge devices to powerful data centers. Additionally, the TensorRT ecosystem features TensorRT-LLM, an open-source library designed to accelerate and refine the inference capabilities of contemporary large language models on the NVIDIA AI platform, allowing developers to test and modify new LLMs efficiently through a user-friendly Python API. This innovative approach not only enhances performance but also encourages rapid experimentation and adaptation in the evolving landscape of AI applications.
API Access
Has API
API Access
Has API
Integrations
PyTorch
TensorFlow
AWS Neuron
AWS Nitro System
AWS Trainium
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Integrations
PyTorch
TensorFlow
AWS Neuron
AWS Nitro System
AWS Trainium
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/ec2/capacityblocks/
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/tensorrt
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization