Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
AForge.NET is an open-source framework developed in C# that caters to developers and researchers engaged in areas such as Computer Vision and Artificial Intelligence, encompassing image processing, neural networks, genetic algorithms, fuzzy logic, machine learning, and robotics, among others. The ongoing enhancements to the framework indicate that new features and namespaces are continuously being added. For those interested in staying updated on its advancements, it is advisable to monitor the logs of the source repository or participate in the project discussion group for the latest announcements. In addition to various libraries and their source codes, the framework also includes numerous sample applications that showcase its capabilities, along with comprehensive documentation in HTML Help format to assist users in navigating its functionalities. This rich set of resources ensures that both novice and experienced developers can leverage the framework effectively in their projects.
Description
GPUs excel at swiftly transferring data but suffer from limited locality of reference due to their relatively small caches, which makes them better suited for scenarios that involve heavy computation on small datasets rather than light computation on large ones. Consequently, the networks optimized for GPU architecture tend to run in layers sequentially to maximize the throughput of their computational pipelines (as illustrated in Figure 1 below). To accommodate larger models, given the GPUs' restricted memory capacity of only tens of gigabytes, multiple GPUs are often pooled together, leading to the distribution of models across these units and resulting in a convoluted software framework that must navigate the intricacies of communication and synchronization between different machines. In contrast, CPUs possess significantly larger and faster caches, along with access to extensive memory resources that can reach terabytes, allowing a typical CPU server to hold memory equivalent to that of dozens or even hundreds of GPUs. This makes CPUs particularly well-suited for a brain-like machine learning environment, where only specific portions of a vast network are activated as needed, offering a more flexible and efficient approach to processing. By leveraging the strengths of CPUs, machine learning systems can operate more smoothly, accommodating the demands of complex models while minimizing overhead.
API Access
Has API
API Access
Has API
Integrations
No details available.
Integrations
No details available.
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
AForge.NET
Website
www.aforgenet.com/framework/
Vendor Details
Company Name
Neural Magic
Founded
2018
Country
United States
Website
neuralmagic.com
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization