Best Columnar Databases for Astro

Find and compare the best Columnar Databases for Astro in 2024

Use the comparison tool below to compare the top Columnar Databases for Astro on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    The Apache Cassandra database provides high availability and scalability without compromising performance. It is the ideal platform for mission-critical data because it offers linear scalability and demonstrated fault-tolerance with commodity hardware and cloud infrastructure. Cassandra's ability to replicate across multiple datacenters is first-in-class. This provides lower latency for your users, and the peace-of-mind that you can withstand regional outages.
  • 2
    Snowflake Reviews

    Snowflake

    Snowflake

    $40.00 per month
    4 Ratings
    Your cloud data platform. Access to any data you need with unlimited scalability. All your data is available to you, with the near-infinite performance and concurrency required by your organization. You can seamlessly share and consume shared data across your organization to collaborate and solve your most difficult business problems. You can increase productivity and reduce time to value by collaborating with data professionals to quickly deliver integrated data solutions from any location in your organization. Our technology partners and system integrators can help you deploy Snowflake to your success, no matter if you are moving data into Snowflake.
  • 3
    Apache Druid Reviews
    Apache Druid, an open-source distributed data store, is Apache Druid. Druid's core design blends ideas from data warehouses and timeseries databases to create a high-performance real-time analytics database that can be used for a wide range of purposes. Druid combines key characteristics from each of these systems into its ingestion, storage format, querying, and core architecture. Druid compresses and stores each column separately, so it only needs to read the ones that are needed for a specific query. This allows for fast scans, ranking, groupBys, and groupBys. Druid creates indexes that are inverted for string values to allow for fast search and filter. Connectors out-of-the box for Apache Kafka and HDFS, AWS S3, stream processors, and many more. Druid intelligently divides data based upon time. Time-based queries are much faster than traditional databases. Druid automatically balances servers as you add or remove servers. Fault-tolerant architecture allows for server failures to be avoided.
  • 4
    Apache Pinot Reviews

    Apache Pinot

    Apache Corporation

    Pinot is designed to answer OLAP questions with low latency and immutable data. Pluggable indexing technologies: Sorted Index (Bitmap Index), Inverted Index. Trino and PrestoDB are both available for querying, but joins are not currently supported. SQL-like language that supports selection and aggregation, filtering as well as group by, order, and distinct queries on data. Both an offline and a real-time table are possible. Only use real-time table to cover segments where offline data is not yet available. Customize anomaly detection flow and notification flow to detect the right anomalies.
  • Previous
  • You're on page 1
  • Next