Best Code Coverage Tools for pytest

Find and compare the best Code Coverage tools for pytest in 2025

Use the comparison tool below to compare the top Code Coverage tools for pytest on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Codecov Reviews

    Codecov

    Codecov

    $10 per user per month
    Enhance the quality of your code by adopting healthier coding practices and refining your code review process. Codecov offers a suite of integrated tools designed to organize, merge, archive, and compare coverage reports seamlessly. This service is free for open-source projects, with paid plans beginning at just $10 per user each month. It supports multiple programming languages, including Ruby, Python, C++, and JavaScript, and can be effortlessly integrated into any continuous integration (CI) workflow without the need for extensive setup. The platform features automatic merging of reports across all CI systems and languages into a unified document. Users can receive tailored status updates on various coverage metrics and review reports organized by project, folder, and test type, such as unit or integration tests. Additionally, detailed comments on the coverage reports are directly included in your pull requests. Committed to safeguarding your data and systems, Codecov holds SOC 2 Type II certification, which verifies that an independent third party has evaluated and confirmed their security practices. By utilizing these tools, teams can significantly increase code quality and streamline their development processes.
  • 2
    pytest-cov Reviews
    This plugin generates detailed coverage reports that offer more functionality compared to merely using coverage run. It includes support for subprocess execution, allowing you to fork or run tasks in a subprocess while still obtaining coverage seamlessly. Additionally, it integrates with xdist, enabling the use of all pytest-xdist features without sacrificing coverage reporting. The plugin maintains consistent behavior with pytest, ensuring that all functionalities provided by the coverage package are accessible either via pytest-cov's command line options or through coverage's configuration file. In rare cases, a stray .pth file might remain in the site packages after execution. To guarantee that each test run starts with clean data, the data file is cleared at the start of testing. If you wish to merge coverage results from multiple test runs, you can utilize the --cov-append option to add this data to that of previous runs. Furthermore, the data file is retained at the conclusion of testing, allowing users to leverage standard coverage tools for further analysis of the results. This additional functionality enhances the overall user experience by providing better management of coverage data throughout the testing process.
  • 3
    Coverage.py Reviews

    Coverage.py

    Coverage.py

    Free
    Coverage.py serves as a powerful utility for assessing the code coverage of Python applications. It tracks the execution of your program, recording which segments of the code have been activated, and subsequently reviews the source to pinpoint areas that could have been executed yet remained inactive. This measurement of coverage is primarily utilized to evaluate the efficacy of testing efforts. It provides insights into which portions of your code are being tested and which are left untested. To collect data, you can use the command `coverage run` to execute your test suite. Regardless of how you typically run your tests, you can incorporate coverage by executing your test runner with the coverage tool. If the command for your test runner begins with "python," simply substitute the initial "python" with "coverage run." To restrict coverage evaluation to only the code within the current directory and to identify files that have not been executed at all, include the source parameter in your coverage command. By default, Coverage.py measures line coverage, but it is also capable of assessing branch coverage. Additionally, it provides information on which specific tests executed particular lines of code, enhancing your understanding of test effectiveness. This comprehensive approach to coverage analysis can significantly improve the quality and reliability of your codebase.
  • Previous
  • You're on page 1
  • Next