Best Big Data Software for SQL

Find and compare the best Big Data software for SQL in 2024

Use the comparison tool below to compare the top Big Data software for SQL on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    IBM Cognos Analytics Reviews
    See Software
    Learn More
    Cognos Analytics with Watson brings BI to a new level with AI capabilities that provide a complete, trustworthy, and complete picture of your company. They can forecast the future, predict outcomes, and explain why they might happen. Built-in AI can be used to speed up and improve the blending of data or find the best tables for your model. AI can help you uncover hidden trends and drivers and provide insights in real-time. You can create powerful visualizations and tell the story of your data. You can also share insights via email or Slack. Combine advanced analytics with data science to unlock new opportunities. Self-service analytics that is governed and secures data from misuse adapts to your needs. You can deploy it wherever you need it - on premises, on the cloud, on IBM Cloud Pak®, for Data or as a hybrid option.
  • 2
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    $0.04 per slot hour
    1,686 Ratings
    See Software
    Learn More
    ANSI SQL allows you to analyze petabytes worth of data at lightning-fast speeds with no operational overhead. Analytics at scale with 26%-34% less three-year TCO than cloud-based data warehouse alternatives. You can unleash your insights with a trusted platform that is more secure and scales with you. Multi-cloud analytics solutions that allow you to gain insights from all types of data. You can query streaming data in real-time and get the most current information about all your business processes. Machine learning is built-in and allows you to predict business outcomes quickly without having to move data. With just a few clicks, you can securely access and share the analytical insights within your organization. Easy creation of stunning dashboards and reports using popular business intelligence tools right out of the box. BigQuery's strong security, governance, and reliability controls ensure high availability and a 99.9% uptime SLA. Encrypt your data by default and with customer-managed encryption keys
  • 3
    Gigasheet Reviews

    Gigasheet

    Gigasheet

    $95 per month
    4 Ratings
    Gigasheet is the big data spreadsheet that requires no set up, training, database or coding skills. No SQL or Python code, no IT infrastructure required to explore big data. Big data answers are available to anyone, even if they're not data scientists. Best of all, your first 3GB are free! Gigasheet is used by thousands of people and teams to gain insights in minutes, rather than hours or days. Anyone who can use a spreadsheet can access Gigasheet's big data and analysis capabilities. Sharing and collaboration tools make distributing huge data sets a snap. Gigasheet integrates with more than 135 SaaS platforms and databases.
  • 4
    Zing Data Reviews
    You can quickly find answers with the flexible visual query builder. You can access data via your browser or phone and analyze it anywhere you are. No SQL, data scientist, or desktop required. You can learn from your team mates and search for any questions within your organization with shared questions. @mentions, push notifications and shared chat allow you to bring the right people in the conversation and make data actionable. You can easily copy and modify shared questions, export data and change the way charts are displayed so you don't just see someone else's analysis but make it yours. External sharing can be turned on to allow access to data tables and partners outside your domain. In just two clicks, you can access the underlying data tables. Smart typeaheads make it easy to run custom SQL.
  • 5
    Trino Reviews
    Trino is an engine that runs at incredible speeds. Fast-distributed SQL engine for big data analytics. Helps you explore the data universe. Trino is an extremely parallel and distributed query-engine, which is built from scratch for efficient, low latency analytics. Trino is used by the largest organizations to query data lakes with exabytes of data and massive data warehouses. Supports a wide range of use cases including interactive ad-hoc analysis, large batch queries that take hours to complete, and high volume apps that execute sub-second queries. Trino is a ANSI SQL query engine that works with BI Tools such as R Tableau Power BI Superset and many others. You can natively search data in Hadoop S3, Cassandra MySQL and many other systems without having to use complex, slow and error-prone copying processes. Access data from multiple systems in a single query.
  • 6
    Etlworks Reviews

    Etlworks

    Etlworks

    $300 per month
    Etlworks is a cloud-first, all-to-any data integration platform. It scales with your business. It can connect to databases and business applications as well as structured, semi-structured and unstructured data of all types, shapes, and sizes. With an intuitive drag-and drop interface, scripting languages and SQL, you can quickly create, test and schedule complex data integration and automation scenarios. Etlworks supports real time change data capture (CDC), EDI transformations and many other data integration tasks. It works exactly as advertised.
  • 7
    Apache Iceberg Reviews

    Apache Iceberg

    Apache Software Foundation

    Free
    Iceberg is an efficient format for large analytical tables. Iceberg brings the simplicity and reliability of SQL tables to the world of big data. It also allows engines like Spark, Trino Flink Presto Hive Impala and Impala to work safely with the same tables at the same time. Iceberg supports SQL commands that are flexible to merge new data, update rows, and perform targeted deletions. Iceberg can eagerly write data files to improve read performance or it can use delete-deltas for faster updates. Iceberg automates the tedious, error-prone process of generating partition values for each row in a table. It also skips unnecessary files and partitions. There are no extra filters needed for fast queries and the table layout is easily updated when data or queries change.
  • 8
    Hydrolix Reviews

    Hydrolix

    Hydrolix

    $2,237 per month
    Hydrolix is a streaming lake of data that combines decoupled archiving, indexed searching, and stream processing for real-time query performance on terabyte scale at a dramatically lower cost. CFOs love that data retention costs are 4x lower. Product teams appreciate having 4x more data at their disposal. Scale up resources when needed and down when not. Control costs by fine-tuning resource consumption and performance based on workload. Imagine what you could build if you didn't have budget constraints. Log data from Kafka, Kinesis and HTTP can be ingested, enhanced and transformed. No matter how large your data, you will only get the data that you need. Reduce latency, costs, and eliminate timeouts and brute-force queries. Storage is decoupled with ingest and queries, allowing them to scale independently to meet performance and cost targets. Hydrolix's HDX (high-density compress) reduces 1TB to 55GB.
  • 9
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 10
    Qubole Reviews
    Qubole is an open, secure, and simple Data Lake Platform that enables machine learning, streaming, or ad-hoc analysis. Our platform offers end-to-end services to reduce the time and effort needed to run Data pipelines and Streaming Analytics workloads on any cloud. Qubole is the only platform that offers more flexibility and openness for data workloads, while also lowering cloud data lake costs up to 50%. Qubole provides faster access to trusted, secure and reliable datasets of structured and unstructured data. This is useful for Machine Learning and Analytics. Users can efficiently perform ETL, analytics, or AI/ML workloads in an end-to-end fashion using best-of-breed engines, multiple formats and libraries, as well as languages that are adapted to data volume and variety, SLAs, and organizational policies.
  • 11
    Starburst Enterprise Reviews
    Starburst allows you to make better decisions by having quick access to all of your data. Your company has more data than ever, but your data teams are still waiting to analyze it. Starburst gives your data teams quick and accurate access to more data. Starburst Enterprise, a fully supported, production-tested, enterprise-grade distribution for open source Trino (formerly Presto®, SQL), is now available. It increases performance and security, while making it easy for you to deploy, connect, manage, and manage your Trino environment. Starburst allows your team to connect to any source of data, whether it's on-premise, in a cloud, or across a hybrid cloud environment. This allows them to use the analytics tools they already love and access data that lives anywhere.
  • 12
    IBM Db2 Big SQL Reviews
    A hybrid SQL-onHadoop engine that delivers advanced, security-rich data queries across enterprise big data sources including Hadoop object storage and data warehouses. IBM Db2 Big SQL, an enterprise-grade, hybrid ANSI compliant SQL-on-Hadoop engine that delivers massively parallel processing and advanced data query, is available. Db2 Big SQL allows you to connect to multiple sources, such as Hadoop HDFS and WebHDFS. RDMS, NoSQL database, object stores, and RDMS. You can benefit from low latency, high speed, data security, SQL compatibility and federation capabilities to perform complex and ad-hoc queries. Db2 Big SQL now comes in two versions. It can be integrated with Cloudera Data Platform or accessed as a cloud native service on the IBM Cloud Pak®. for Data platform. Access, analyze, and perform queries on real-time and batch data from multiple sources, including Hadoop, object stores, and data warehouses.
  • 13
    kdb Insights Reviews
    kdb Insights, a cloud native, high-performance analytics solution designed for real-time data analysis of streaming and historical data, is a platform that can be used to analyze both streams and historical information. It allows for intelligent decision making regardless of data volume and velocity. It offers unmatched performance and price, and delivers analytics up to 100-fold faster than other solutions. The platform allows interactive data visualization via real-time dashboards to facilitate instantaneous insight and decision-making. It also integrates machine-learning models to predict and cluster structured data, detect patterns, score it, and enhance AI capabilities for time-series datasets. kdb Insights is scalable enough to handle large volumes of real-time data and historical data. This has been proven with volumes up to 110 Terabytes per Day. Its simple data intake and quick setup accelerate time-to value. Native support for q SQL and Python is also available, as well as compatibility with other programming languages via RESTful interfaces.
  • 14
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 15
    Crux Reviews
    Crux is used by the most powerful people to increase external data integration, transformation and observability, without increasing their headcount. Our cloud-native data technology accelerates the preparation, observation, and delivery of any external dataset. We can guarantee you receive high-quality data at the right time, in the right format, and in the right location. Automated schema detection, delivery schedule inference and lifecycle management are all tools that can be used to quickly build pipelines from any external source of data. A private catalog of linked and matched data products will increase your organization's discoverability. To quickly combine data from multiple sources and accelerate analytics, enrich, validate, and transform any data set, you can enrich, validate, or transform it.
  • 16
    Polars Reviews
    Polars, which is aware of the data-wrangling habits of its users, exposes a complete Python interface, including all of the features necessary to manipulate DataFrames. This includes an expression language, which will allow you to write readable, performant code. Polars was written in Rust to provide the Rust ecosystem with a feature-complete DataFrame interface. Use it as either a DataFrame Library or as a query backend for your Data Models.
  • 17
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next