Best Big Data Software for Okera

Find and compare the best Big Data software for Okera in 2025

Use the comparison tool below to compare the top Big Data software for Okera on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Looker Reviews
    Top Pick
    Looker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web.
  • 2
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 3
    Starburst Enterprise Reviews
    Starburst allows you to make better decisions by having quick access to all of your data. Your company has more data than ever, but your data teams are still waiting to analyze it. Starburst gives your data teams quick and accurate access to more data. Starburst Enterprise, a fully supported, production-tested, enterprise-grade distribution for open source Trino (formerly Presto®, SQL), is now available. It increases performance and security, while making it easy for you to deploy, connect, manage, and manage your Trino environment. Starburst allows your team to connect to any source of data, whether it's on-premise, in a cloud, or across a hybrid cloud environment. This allows them to use the analytics tools they already love and access data that lives anywhere.
  • 4
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 5
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 6
    Amazon EMR Reviews
    Amazon EMR is the market-leading cloud big data platform. It processes large amounts of data with open source tools like Apache Spark, Apache Hive and Apache HBase. EMR allows you to run petabyte-scale analysis at a fraction of the cost of traditional on premises solutions. It is also 3x faster than standard Apache Spark. You can spin up and down clusters for short-running jobs and only pay per second for the instances. You can also create highly available clusters that scale automatically to meet the demand for long-running workloads. You can also run EMR clusters from AWS Outposts if you have on-premises open source tools like Apache Spark or Apache Hive.
  • 7
    Delta Lake Reviews
    Delta Lake is an open-source storage platform that allows ACID transactions to Apache Spark™, and other big data workloads. Data lakes often have multiple data pipelines that read and write data simultaneously. This makes it difficult for data engineers to ensure data integrity due to the absence of transactions. Your data lakes will benefit from ACID transactions with Delta Lake. It offers serializability, which is the highest level of isolation. Learn more at Diving into Delta Lake - Unpacking the Transaction log. Even metadata can be considered "big data" in big data. Delta Lake treats metadata the same as data and uses Spark's distributed processing power for all its metadata. Delta Lake is able to handle large tables with billions upon billions of files and partitions at a petabyte scale. Delta Lake allows developers to access snapshots of data, allowing them to revert to earlier versions for audits, rollbacks, or to reproduce experiments.
  • 8
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next