Best Big Data Software for NVIDIA RAPIDS

Find and compare the best Big Data software for NVIDIA RAPIDS in 2024

Use the comparison tool below to compare the top Big Data software for NVIDIA RAPIDS on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Iguazio Reviews

    Iguazio

    Iguazio (Acquired by McKinsey)

    The Iguazio AI Platform provides a complete AI workflow in a single ready-to-use platform that includes all the required building blocks for building, deploying, operationalizing, scaling and de-risking ML and GenAI applications in live business environments. Highlights: - From POC to production - Get your AI projects out of the lab and into production with full automation and auto-scaling capabilities. - LLM Customization - Responsibly fine-tune models with RAG, RAFT and more. Improve model accuracy and performance at minimal cost. - GPU Provisioning - Optimize GPU resources by scaling usage up and down as needed. - Hybrid Deployment - Including AWS cloud, AWS GovCloud and AWS Outposts. - Governance - Monitor AI applications, address regulation needs, keep PII secure, mitigate bias and more
  • 2
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 3
    HEAVY.AI Reviews
    HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most.
  • 4
    HPE Ezmeral Data Fabric Reviews

    HPE Ezmeral Data Fabric

    Hewlett Packard Enterprise

    Access HPE Ezmeral Data Fabric Software through a fully-managed service. Register for a 300GB trial to test out the latest capabilities and features. Enterprise data is increasingly distributed across an increasing number of locations, while at the same, the demand for insights continues growing as users expect richer and high-quality data insight. Hybrid cloud offers the best results in terms of cost and data placement. They also offer the best user experience. The advantage of hybrid cloud is that it allows you to better match your applications with the right services throughout the lifecycle of the application. The downside of hybrid technology is that it introduces a new level of complexity, such as the need for multiple analytic formats and organizational risk.
  • 5
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • Previous
  • You're on page 1
  • Next