Best Big Data Software for Jupyter Notebook

Find and compare the best Big Data software for Jupyter Notebook in 2025

Use the comparison tool below to compare the top Big Data software for Jupyter Notebook on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Saturn Cloud Reviews
    Top Pick

    Saturn Cloud

    Saturn Cloud

    $0.005 per GB per hour
    94 Ratings
    Saturn Cloud is an AI/ML platform available on every cloud. Data teams and engineers can build, scale, and deploy their AI/ML applications with any stack.
  • 2
    Stata Reviews

    Stata

    StataCorp

    $48.00/6-month/student
    Stata is a comprehensive, integrated software package that can handle all aspects of data science: data manipulation, visualization and statistics, as well as automated reporting. Stata is quick and accurate. The extensive graphical interface makes it easy to use, but is also fully programable. Stata's menus, dialogs and buttons give you the best of both worlds. All Stata's data management, statistical, and graphical features are easy to access by dragging and dropping or point-and-click. To quickly execute commands, you can use Stata's intuitive command syntax. You can log all actions and results, regardless of whether you use the menus or dialogs. This will ensure reproducibility and integrity in your analysis. Stata also offers complete command-line programming and programming capabilities, including a full matrix language. All the commands that Stata ships with are available to you, whether you want to create new Stata commands or script your analysis.
  • 3
    GeoSpock Reviews
    GeoSpock DB - The space-time analytics database - allows data fusion in the connected world. GeoSpockDB is a unique cloud-native database that can be used to query for real-world applications. It can combine multiple sources of Internet of Things data to unlock their full potential, while simultaneously reducing complexity, cost, and complexity. GeoSpock DB enables data fusion and efficient storage. It also allows you to run ANSI SQL query and connect to analytics tools using JDBC/ODBC connectors. Users can perform analysis and share insights with familiar toolsets. This includes support for common BI tools such as Tableau™, Amazon QuickSight™, and Microsoft Power BI™, as well as Data Science and Machine Learning environments (including Python Notebooks or Apache Spark). The database can be integrated with internal applications as well as web services, including compatibility with open-source visualisation libraries like Cesium.js and Kepler.
  • 4
    Tengu Reviews
    TENGU is a Data orchestration platform that serves as a central workspace for all data profiles to work more efficiently and enhance collaboration. Allowing you to get the most out of your data, faster. It allows complete control over your data environment in an innovative graph view for intuitive monitoring. Connecting all necessary tools in one workspace. It enables self-service, monitoring and automation, supporting all data roles and operations from integration to transformation.
  • 5
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 6
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • Previous
  • You're on page 1
  • Next