Best Artificial Intelligence Software for H2O.ai

Find and compare the best Artificial Intelligence software for H2O.ai in 2025

Use the comparison tool below to compare the top Artificial Intelligence software for H2O.ai on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 2
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.
  • 3
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 4
    Superwise Reviews
    You can now build what took years. Simple, customizable, scalable, secure, ML monitoring. Everything you need to deploy and maintain ML in production. Superwise integrates with any ML stack, and can connect to any number of communication tools. Want to go further? Superwise is API-first. All of our APIs allow you to access everything, and we mean everything. All this from the comfort of your cloud. You have complete control over ML monitoring. You can set up metrics and policies using our SDK and APIs. Or, you can simply choose a template to monitor and adjust the sensitivity, conditions and alert channels. Get Superwise or contact us for more information. Superwise's ML monitoring policy templates allow you to quickly create alerts. You can choose from dozens pre-built monitors, ranging from data drift and equal opportunity, or you can customize policies to include your domain expertise.
  • 5
    MLflow Reviews
    MLflow is an open-source platform that manages the ML lifecycle. It includes experimentation, reproducibility and deployment. There is also a central model registry. MLflow currently has four components. Record and query experiments: data, code, config, results. Data science code can be packaged in a format that can be reproduced on any platform. Machine learning models can be deployed in a variety of environments. A central repository can store, annotate and discover models, as well as manage them. The MLflow Tracking component provides an API and UI to log parameters, code versions and metrics. It can also be used to visualize the results later. MLflow Tracking allows you to log and query experiments using Python REST, R API, Java API APIs, and REST. An MLflow Project is a way to package data science code in a reusable, reproducible manner. It is based primarily upon conventions. The Projects component also includes an API and command line tools to run projects.
  • 6
    TruEra Reviews
    This machine learning monitoring tool allows you to easily monitor and troubleshoot large model volumes. Data scientists can avoid false alarms and dead ends by using an unrivaled explainability accuracy and unique analyses that aren't available anywhere else. This allows them to quickly and effectively address critical problems. So that your business runs at its best, machine learning models are optimized. TruEra's explainability engine is the result of years of dedicated research and development. It is significantly more accurate that current tools. TruEra's enterprise-class AI explainability tech is unrivalled. The core diagnostic engine is built on six years of research by Carnegie Mellon University. It outperforms all competitors. The platform performs sophisticated sensitivity analyses quickly, allowing data scientists, business users, risk and compliance teams to understand how and why a model makes predictions.
  • 7
    Robust Intelligence Reviews
    Robust Intelligence Platform seamlessly integrates into your ML lifecycle to eliminate any model failures. The platform detects weaknesses in your model, detects statistical data issues such as drift, and prevents data from being inserted into your AI system. A single test is the heart of our test-based approach. Each test measures the model's resistance to a particular type of production model failure. Stress Testing runs hundreds upon hundreds of these tests in order to assess model production readiness. These tests are used to automatically configure an AI Firewall to protect the model from the specific types of failures to which it is most vulnerable. Continuous Testing also runs these tests during production. Continuous Testing provides an automated root cause analysis that identifies the root cause of any test failure. ML Integrity can be ensured by using all three elements of Robust Intelligence.
  • Previous
  • You're on page 1
  • Next