Best Artificial Intelligence Software for Google Cloud Deep Learning VM Image

Find and compare the best Artificial Intelligence software for Google Cloud Deep Learning VM Image in 2025

Use the comparison tool below to compare the top Artificial Intelligence software for Google Cloud Deep Learning VM Image on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud Platform Reviews
    Top Pick

    Google Cloud Platform

    Google

    Free ($300 in free credits)
    56,309 Ratings
    See Software
    Learn More
    The Google Cloud Platform (GCP) offers a comprehensive collection of Artificial Intelligence (AI) and machine learning resources aimed at simplifying data analysis processes. It features a range of pre-trained models and APIs, including Vision AI, Natural Language, and AutoML, enabling businesses to effortlessly integrate AI into their applications without needing extensive knowledge of the subject. New users are also granted $300 in complimentary credits to experiment with, test, and implement workloads, allowing them to investigate the platform's AI functionalities and develop sophisticated machine learning applications without any upfront investment. GCP’s AI offerings are designed to work harmoniously with other services, facilitating the creation of complete machine learning workflows from data management to model deployment. Moreover, these tools are built for scalability, empowering organizations to explore AI and expand their AI-driven solutions as their requirements evolve. With these capabilities, companies can swiftly adopt AI for a variety of applications, including predictive analysis and automation.
  • 2
    Google Compute Engine Reviews

    Google Compute Engine

    Google

    Free ($300 in free credits)
    1,114 Ratings
    See Software
    Learn More
    Compute Engine (IaaS), a platform from Google that allows organizations to create and manage cloud-based virtual machines, is an infrastructure as a services (IaaS). Computing infrastructure in predefined sizes or custom machine shapes to accelerate cloud transformation. General purpose machines (E2, N1,N2,N2D) offer a good compromise between price and performance. Compute optimized machines (C2) offer high-end performance vCPUs for compute-intensive workloads. Memory optimized (M2) systems offer the highest amount of memory and are ideal for in-memory database applications. Accelerator optimized machines (A2) are based on A100 GPUs, and are designed for high-demanding applications. Integrate Compute services with other Google Cloud Services, such as AI/ML or data analytics. Reservations can help you ensure that your applications will have the capacity needed as they scale. You can save money by running Compute using the sustained-use discount, and you can even save more when you use the committed-use discount.
  • 3
    TensorFlow Reviews
    TensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process.
  • 4
    PyTorch Reviews
    Effortlessly switch between eager and graph modes using TorchScript, while accelerating your journey to production with TorchServe. The torch-distributed backend facilitates scalable distributed training and enhances performance optimization for both research and production environments. A comprehensive suite of tools and libraries enriches the PyTorch ecosystem, supporting development across fields like computer vision and natural language processing. Additionally, PyTorch is compatible with major cloud platforms, simplifying development processes and enabling seamless scaling. You can easily choose your preferences and execute the installation command. The stable version signifies the most recently tested and endorsed iteration of PyTorch, which is typically adequate for a broad range of users. For those seeking the cutting-edge, a preview is offered, featuring the latest nightly builds of version 1.10, although these may not be fully tested or supported. It is crucial to verify that you meet all prerequisites, such as having numpy installed, based on your selected package manager. Anaconda is highly recommended as the package manager of choice, as it effectively installs all necessary dependencies, ensuring a smooth installation experience for users. This comprehensive approach not only enhances productivity but also ensures a robust foundation for development.
  • 5
    Google Cloud TPU Reviews

    Google Cloud TPU

    Google

    $0.97 per chip-hour
    Advancements in machine learning have led to significant breakthroughs in both business applications and research, impacting areas such as network security and medical diagnostics. To empower a broader audience to achieve similar innovations, we developed the Tensor Processing Unit (TPU). This custom-built machine learning ASIC is the backbone of Google services like Translate, Photos, Search, Assistant, and Gmail. By leveraging the TPU alongside machine learning, companies can enhance their success, particularly when scaling operations. The Cloud TPU is engineered to execute state-of-the-art machine learning models and AI services seamlessly within Google Cloud. With a custom high-speed network delivering over 100 petaflops of performance in a single pod, the computational capabilities available can revolutionize your business or lead to groundbreaking research discoveries. Training machine learning models resembles the process of compiling code: it requires frequent updates, and efficiency is key. As applications are developed, deployed, and improved, ML models must undergo continuous training to keep pace with evolving demands and functionalities. Ultimately, leveraging these advanced tools can position your organization at the forefront of innovation.
  • 6
    MXNet Reviews

    MXNet

    The Apache Software Foundation

    A hybrid front-end efficiently switches between Gluon eager imperative mode and symbolic mode, offering both adaptability and speed. The framework supports scalable distributed training and enhances performance optimization for both research and real-world applications through its dual parameter server and Horovod integration. It features deep compatibility with Python and extends support to languages such as Scala, Julia, Clojure, Java, C++, R, and Perl. A rich ecosystem of tools and libraries bolsters MXNet, facilitating a variety of use-cases, including computer vision, natural language processing, time series analysis, and much more. Apache MXNet is currently in the incubation phase at The Apache Software Foundation (ASF), backed by the Apache Incubator. This incubation stage is mandatory for all newly accepted projects until they receive further evaluation to ensure that their infrastructure, communication practices, and decision-making processes align with those of other successful ASF initiatives. By engaging with the MXNet scientific community, individuals can actively contribute, gain knowledge, and find solutions to their inquiries. This collaborative environment fosters innovation and growth, making it an exciting time to be involved with MXNet.
  • 7
    NVIDIA DRIVE Reviews
    Software transforms a vehicle into a smart machine, and the NVIDIA DRIVE™ Software stack serves as an open platform that enables developers to effectively create and implement a wide range of advanced autonomous vehicle applications, such as perception, localization and mapping, planning and control, driver monitoring, and natural language processing. At the core of this software ecosystem lies DRIVE OS, recognized as the first operating system designed for safe accelerated computing. This system incorporates NvMedia for processing sensor inputs, NVIDIA CUDA® libraries to facilitate efficient parallel computing, and NVIDIA TensorRT™ for real-time artificial intelligence inference, alongside numerous tools and modules that provide access to hardware capabilities. The NVIDIA DriveWorks® SDK builds on DRIVE OS, offering essential middleware functions that are critical for the development of autonomous vehicles. These functions include a sensor abstraction layer (SAL) and various sensor plugins, a data recorder, vehicle I/O support, and a framework for deep neural networks (DNN), all of which are vital for enhancing the performance and reliability of autonomous systems. With these powerful resources, developers are better equipped to innovate and push the boundaries of what's possible in automated transportation.
  • 8
    Chainer Reviews
    Chainer is a robust, adaptable, and user-friendly framework designed for building neural networks. It facilitates CUDA computation, allowing developers to utilize a GPU with just a few lines of code. Additionally, it effortlessly scales across multiple GPUs. Chainer accommodates a wide array of network architectures, including feed-forward networks, convolutional networks, recurrent networks, and recursive networks, as well as supporting per-batch designs. The framework permits forward computations to incorporate any Python control flow statements without compromising backpropagation capabilities, resulting in more intuitive and easier-to-debug code. It also features ChainerRLA, a library that encompasses several advanced deep reinforcement learning algorithms. Furthermore, with ChainerCVA, users gain access to a suite of tools specifically tailored for training and executing neural networks in computer vision applications. The ease of use and flexibility of Chainer makes it a valuable asset for both researchers and practitioners in the field. Additionally, its support for various devices enhances its versatility in handling complex computational tasks.
  • Previous
  • You're on page 1
  • Next