Best AI Infrastructure Platforms for Snowflake

Find and compare the best AI Infrastructure platforms for Snowflake in 2024

Use the comparison tool below to compare the top AI Infrastructure platforms for Snowflake on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Klu Reviews
    Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools.
  • 2
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 3
    Wallaroo.AI Reviews
    Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models.
  • 4
    Lemma Reviews
    Distributed workflows for production and prototype that are event-driven and span AI models, databases, APIs, ETL systems and applications. All on one platform. Reduce operational overheads and infrastructure complexity to enable a faster time-to-value for your organization. Focus on investing in proprietary logical and accelerating feature deliveries without wasting time with platform and architecture choices that slow down development and execution. Revolutionize emergency response through real-time transcription, keyword identification and keyphrase recognition, and integrated connectivity with external systems. Connect the physical and digital realms and optimize maintenance by monitoring sensors, creating a triage for operator review after an alert and creating service tickets on your work order platform. By generating responses based on data from various platforms, you can apply past experience to current problems in new ways.
  • Previous
  • You're on page 1
  • Next