Best AI Fine-Tuning Platforms for LangChain

Find and compare the best AI Fine-Tuning platforms for LangChain in 2024

Use the comparison tool below to compare the top AI Fine-Tuning platforms for LangChain on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Metal Reviews

    Metal

    Metal

    $25 per month
    Metal is a fully-managed, production-ready ML retrieval platform. Metal embeddings can help you find meaning in unstructured data. Metal is a managed services that allows you build AI products without having to worry about managing infrastructure. Integrations with OpenAI and CLIP. Easy processing & chunking of your documents. Profit from our system in production. MetalRetriever is easily pluggable. Simple /search endpoint to run ANN queries. Get started for free. Metal API Keys are required to use our API and SDKs. Authenticate by populating headers with your API Key. Learn how to integrate Metal into your application using our Typescript SDK. You can use this library in JavaScript as well, even though we love TypeScript. Fine-tune spp programmatically. Indexed vector data of your embeddings. Resources that are specific to your ML use case.
  • 2
    Deep Lake Reviews

    Deep Lake

    activeloop

    $995 per month
    We've been working on Generative AI for 5 years. Deep Lake combines the power and flexibility of vector databases and data lakes to create enterprise-grade LLM-based solutions and refine them over time. Vector search does NOT resolve retrieval. You need a serverless search for multi-modal data including embeddings and metadata to solve this problem. You can filter, search, and more using the cloud, or your laptop. Visualize your data and embeddings to better understand them. Track and compare versions to improve your data and your model. OpenAI APIs are not the foundation of competitive businesses. Your data can be used to fine-tune LLMs. As models are being trained, data can be efficiently streamed from remote storage to GPUs. Deep Lake datasets can be visualized in your browser or Jupyter Notebook. Instantly retrieve different versions and materialize new datasets on the fly via queries. Stream them to PyTorch, TensorFlow, or Jupyter Notebook.
  • 3
    AgentOps Reviews

    AgentOps

    AgentOps

    $40 per month
    Platform for AI agents testing and debugging by the industry's leading developers. We developed the tools, so you don't need to. Visually track events, such as LLM, tools, and agent interactions. Rewind and playback agent runs with pinpoint precision. Keep a complete data trail from prototype to production of logs, errors and prompt injection attacks. Native integrations with top agent frameworks. Track, save and monitor each token that your agent sees. Monitor and manage agent spending using the most recent price monitoring. Save up to 25x on specialized LLMs by fine-tuning them based on completed completions. Build your next agent using evals and replays. You can visualize the behavior of your agents in your AgentOps dashboard with just two lines of coding. After you set up AgentOps each execution of your program will be recorded as a "session" and the data will automatically be recorded for you.
  • 4
    Azure AI Studio Reviews
    Your platform for developing generative AI and custom copilots. Use pre-built and customizable AI model on your data to build solutions faster. Explore a growing collection of models, both open-source and frontier-built, that are pre-built and customizable. Create AI models using a code first experience and an accessible UI validated for accessibility by developers with disabilities. Integrate all your OneLake data into Microsoft Fabric. Integrate with GitHub codespaces, Semantic Kernel and LangChain. Build apps quickly with prebuilt capabilities. Reduce wait times by personalizing content and interactions. Reduce the risk for your organization and help them discover new things. Reduce the risk of human error by using data and tools. Automate operations so that employees can focus on more important tasks.
  • Previous
  • You're on page 1
  • Next