Best Time Series Databases for SQL Server

Find and compare the best Time Series Databases for SQL Server in 2025

Use the comparison tool below to compare the top Time Series Databases for SQL Server on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Telegraf Reviews
    Telegraf is an open-source server agent that helps you collect metrics from your sensors, stacks, and systems. Telegraf is a plugin-driven agent that collects and sends metrics and events from systems, databases, and IoT sensors. Telegraf is written in Go. It compiles to a single binary and has no external dependencies. It also requires very little memory. Telegraf can gather metrics from a wide variety of inputs and then write them into a wide range of outputs. It can be easily extended by being plugin-driven for both the collection and output data. It is written in Go and can be run on any system without external dependencies. It is easy to collect metrics from your endpoints with the 300+ plugins that have been created by data experts in the community.
  • 2
    Circonus IRONdb Reviews
    Circonus IRONdb simplifies the management and storage of limitless telemetry data, effortlessly processing billions of metric streams. It empowers users to recognize both opportunities and challenges in real time, offering unmatched forensic, predictive, and automated analytics capabilities. With the help of machine learning, it automatically establishes a "new normal" as your operations and data evolve. Additionally, Circonus IRONdb seamlessly integrates with Grafana, which natively supports our analytics query language, and is also compatible with other visualization tools like Graphite-web. To ensure data security, Circonus IRONdb maintains multiple copies across a cluster of IRONdb nodes. While system administrators usually oversee clustering, they often dedicate considerable time to its upkeep and functionality. However, with Circonus IRONdb, operators can easily configure their clusters to run autonomously, allowing them to focus on more strategic tasks rather than the tedious management of their time series data storage. This streamlined approach not only enhances efficiency but also maximizes resource utilization.
  • Previous
  • You're on page 1
  • Next