Best Time Series Databases for Google Cloud Bigtable

Find and compare the best Time Series Databases for Google Cloud Bigtable in 2025

Use the comparison tool below to compare the top Time Series Databases for Google Cloud Bigtable on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    InfluxDB Reviews
    InfluxDB is a purpose-built data platform designed to handle all time series data, from users, sensors, applications and infrastructure — seamlessly collecting, storing, visualizing, and turning insight into action. With a library of more than 250 open source Telegraf plugins, importing and monitoring data from any system is easy. InfluxDB empowers developers to build transformative IoT, monitoring and analytics services and applications. InfluxDB’s flexible architecture fits any implementation — whether in the cloud, at the edge or on-premises — and its versatility, accessibility and supporting tools (client libraries, APIs, etc.) make it easy for developers at any level to quickly build applications and services with time series data. Optimized for developer efficiency and productivity, the InfluxDB platform gives builders time to focus on the features and functionalities that give their internal projects value and their applications a competitive edge. To get started, InfluxData offers free training through InfluxDB University.
  • 2
    OpenTSDB Reviews
    OpenTSDB comprises a Time Series Daemon (TSD) along with a suite of command line tools. Users primarily engage with OpenTSDB by operating one or more independent TSDs, as there is no centralized master or shared state, allowing for the scalability to run multiple TSDs as necessary to meet varying loads. Each TSD utilizes HBase, an open-source database, or the hosted Google Bigtable service for the storage and retrieval of time-series data. The schema designed for the data is highly efficient, enabling rapid aggregations of similar time series while minimizing storage requirements. Users interact with the TSD without needing direct access to the underlying storage system. Communication with the TSD can be accomplished through a straightforward telnet-style protocol, an HTTP API, or a user-friendly built-in graphical interface. To begin utilizing OpenTSDB, the initial task is to send time series data to the TSDs, and there are various tools available to facilitate the import of data from different sources into OpenTSDB. Overall, OpenTSDB's design emphasizes flexibility and efficiency for time series data management.
  • 3
    Heroic Reviews
    Heroic is an open-source monitoring solution initially developed at Spotify to tackle challenges related to the large-scale collection and near real-time analysis of metrics. It comprises a limited number of specialized components that each serve distinct purposes. The system offers indefinite data retention, contingent upon adequate hardware investment, alongside federation capabilities that enable multiple Heroic clusters to connect and present a unified interface. A key component, Consumers, is tasked with the consumption of metrics, illustrating the system's design for efficiency. During the development of Heroic, it became evident that managing hundreds of millions of time series without sufficient context poses significant challenges. Additionally, the federation support facilitates the handling of requests across various independent Heroic clusters, allowing them to serve clients via a single global interface. This feature not only streamlines operations but also minimizes geographical traffic, as it allows individual clusters to function independently within their designated zones. Such capabilities ensure that Heroic remains a robust choice for organizations needing effective monitoring solutions.
  • Previous
  • You're on page 1
  • Next