Best Time Series Databases for Apache Spark

Find and compare the best Time Series Databases for Apache Spark in 2025

Use the comparison tool below to compare the top Time Series Databases for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Instaclustr Reviews

    Instaclustr

    Instaclustr

    $20 per node per month
    Instaclustr, the Open Source-as a Service company, delivers reliability at scale. We provide database, search, messaging, and analytics in an automated, trusted, and proven managed environment. We help companies focus their internal development and operational resources on creating cutting-edge customer-facing applications. Instaclustr is a cloud provider that works with AWS, Heroku Azure, IBM Cloud Platform, Azure, IBM Cloud and Google Cloud Platform. The company is certified by SOC 2 and offers 24/7 customer support.
  • 2
    Riak TS Reviews
    RiakĀ®, TS is an enterprise-grade NoSQL Time Series Database that is specifically designed for IoT data and Time Series data. It can ingest, transform, store, and analyze massive amounts of time series information. Riak TS is designed to be faster than Cassandra. Riak TS masterless architecture can read and write data regardless of network partitions or hardware failures. Data is evenly distributed throughout the Riak ring. By default, there are three copies of your data. This ensures that at least one copy is available for reading operations. Riak TS is a distributed software system that does not have a central coordinator. It is simple to set up and use. It is easy to add or remove nodes from a cluster thanks to the masterless architecture. Riak TS's masterless architecture makes it easy for you to add or remove nodes from your cluster. Adding nodes made of commodity hardware to your cluster can help you achieve predictable and almost linear scale.
  • 3
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 4
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • Previous
  • You're on page 1
  • Next