Best Streaming Analytics Platforms for Netdata

Find and compare the best Streaming Analytics platforms for Netdata in 2025

Use the comparison tool below to compare the top Streaming Analytics platforms for Netdata on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Fluentd Reviews

    Fluentd

    Fluentd Project

    Establishing a cohesive logging framework is essential for ensuring that log data is both accessible and functional. Unfortunately, many current solutions are inadequate; traditional tools do not cater to the demands of modern cloud APIs and microservices, and they are not evolving at a sufficient pace. Fluentd, developed by Treasure Data, effectively tackles the issues associated with creating a unified logging framework through its modular design, extensible plugin system, and performance-enhanced engine. Beyond these capabilities, Fluentd Enterprise also fulfills the needs of large organizations by providing features such as Trusted Packaging, robust security measures, Certified Enterprise Connectors, comprehensive management and monitoring tools, as well as SLA-based support and consulting services tailored for enterprise clients. This combination of features makes Fluentd a compelling choice for businesses looking to enhance their logging infrastructure.
  • 2
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions.
  • Previous
  • You're on page 1
  • Next