Best Streaming Analytics Platforms for Hadoop

Find and compare the best Streaming Analytics platforms for Hadoop in 2025

Use the comparison tool below to compare the top Streaming Analytics platforms for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StarTree Reviews
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    IBM StreamSets Reviews

    IBM StreamSets

    IBM

    $1000 per month
    IBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations.
  • 3
    Fluentd Reviews

    Fluentd

    Fluentd Project

    Establishing a cohesive logging framework is essential for ensuring that log data is both accessible and functional. Unfortunately, many current solutions are inadequate; traditional tools do not cater to the demands of modern cloud APIs and microservices, and they are not evolving at a sufficient pace. Fluentd, developed by Treasure Data, effectively tackles the issues associated with creating a unified logging framework through its modular design, extensible plugin system, and performance-enhanced engine. Beyond these capabilities, Fluentd Enterprise also fulfills the needs of large organizations by providing features such as Trusted Packaging, robust security measures, Certified Enterprise Connectors, comprehensive management and monitoring tools, as well as SLA-based support and consulting services tailored for enterprise clients. This combination of features makes Fluentd a compelling choice for businesses looking to enhance their logging infrastructure.
  • 4
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 5
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink serves as a powerful framework and distributed processing engine tailored for executing stateful computations on both unbounded and bounded data streams. It has been engineered to operate seamlessly across various cluster environments, delivering computations with impressive in-memory speed and scalability. Data of all types is generated as a continuous stream of events, encompassing credit card transactions, sensor data, machine logs, and user actions on websites or mobile apps. The capabilities of Apache Flink shine particularly when handling both unbounded and bounded data sets. Its precise management of time and state allows Flink’s runtime to support a wide range of applications operating on unbounded streams. For bounded streams, Flink employs specialized algorithms and data structures optimized for fixed-size data sets, ensuring remarkable performance. Furthermore, Flink is adept at integrating with all previously mentioned resource managers, enhancing its versatility in various computing environments. This makes Flink a valuable tool for developers seeking efficient and reliable stream processing solutions.
  • Previous
  • You're on page 1
  • Next