Best Semantic Layer Tools for Tableau

Find and compare the best Semantic Layer tools for Tableau in 2026

Use the comparison tool below to compare the top Semantic Layer tools for Tableau on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Kyvos Semantic Layer Reviews
    Top Pick
    Kyvos is a semantic data lakehouse designed to speed up every BI and AI initiative, offering lightning-fast analytics at an infinite scale with maximum cost efficiency and the lowest possible carbon footprint. The platform provides high-performance storage for both structured and unstructured data, ensuring trusted data for AI applications. It is built to scale seamlessly, making it an ideal solution for enterprises aiming to maximize their data’s potential. Kyvos is infrastructure-agnostic, which means it fits perfectly into any modern data or AI stack, whether deployed on-premises or in the cloud. Leading companies rely on Kyvos as a unified source for cost-effective, high-performance analytics that foster deep, meaningful insights and context-aware AI application development. By leveraging Kyvos, organizations can break through data barriers, accelerate decision-making, and enhance their AI-driven initiatives. The platform's flexibility allows businesses to create a scalable foundation for a range of data-driven solutions.
  • 2
    Timbr.ai Reviews

    Timbr.ai

    Timbr.ai

    $599/month
    The intelligent semantic layer merges data with its business context and interconnections, consolidates metrics, and speeds up the production of data products by allowing for SQL queries that are 90% shorter. Users can easily model the data using familiar business terminology, creating a shared understanding and aligning the metrics with business objectives. By defining semantic relationships that replace traditional JOIN operations, queries become significantly more straightforward. Hierarchies and classifications are utilized to enhance data comprehension. The system automatically aligns data with the semantic model, enabling the integration of various data sources through a robust distributed SQL engine that supports large-scale querying. Data can be accessed as an interconnected semantic graph, improving performance while reducing computing expenses through an advanced caching engine and materialized views. Users gain from sophisticated query optimization techniques. Additionally, Timbr allows connectivity to a wide range of cloud services, data lakes, data warehouses, databases, and diverse file formats, ensuring a seamless experience with your data sources. When executing a query, Timbr not only optimizes it but also efficiently delegates the task to the backend for improved processing. This comprehensive approach ensures that users can work with their data more effectively and with greater agility.
  • 3
    Codd AI Reviews

    Codd AI

    Codd AI

    $25k per year
    Codd AI addresses a major challenge in the analytics landscape: transforming data into a format that is genuinely suitable for business purposes. Rather than having teams dedicate weeks to the tedious tasks of manually mapping schemas, constructing models, and establishing metrics, Codd leverages generative AI to automatically generate a context-aware semantic layer that connects technical data with the language of the business. As a result, business users can pose inquiries in straightforward English and receive precise, governed responses instantly—whether through BI tools, conversational AI, or various other platforms. Additionally, with built-in governance and auditability, Codd not only accelerates the analytics process but also enhances clarity and reliability. Ultimately, this innovative approach empowers organizations to make more informed decisions based on trustworthy data insights.
  • 4
    CData Connect AI Reviews
    CData's artificial intelligence solution revolves around Connect AI, which offers AI-enhanced connectivity features that enable real-time, governed access to enterprise data without transferring it from the original systems. Connect AI operates on a managed Model Context Protocol (MCP) platform, allowing AI assistants, agents, copilots, and embedded AI applications to directly access and query over 300 data sources, including CRM, ERP, databases, and APIs, while fully comprehending the semantics and relationships of the data. The platform guarantees the enforcement of source system authentication, adheres to existing role-based permissions, and ensures that AI operations—both reading and writing—comply with governance and auditing standards. Furthermore, it facilitates capabilities such as query pushdown, parallel paging, bulk read/write functions, and streaming for extensive datasets, in addition to enabling cross-source reasoning through a cohesive semantic layer. Moreover, CData's "Talk to your Data" feature synergizes with its Virtuality offering, permitting users to engage in conversational interactions to retrieve BI insights and generate reports efficiently. This integration not only enhances user experience but also streamlines data accessibility across the enterprise.
  • 5
    AtScale Reviews
    AtScale streamlines and speeds up business intelligence processes, leading to quicker insights, improved decision-making, and enhanced returns on your cloud analytics investments. It removes the need for tedious data engineering tasks, such as gathering, maintaining, and preparing data for analysis. By centralizing business definitions, AtScale ensures that KPI reporting remains consistent across various BI tools. The platform not only accelerates the time it takes to gain insights from data but also optimizes the management of cloud computing expenses. Additionally, it allows organizations to utilize their existing data security protocols for analytics, regardless of where the data is stored. AtScale’s Insights workbooks and models enable users to conduct Cloud OLAP multidimensional analysis on datasets sourced from numerous providers without the requirement for data preparation or engineering. With user-friendly built-in dimensions and measures, businesses can swiftly extract valuable insights that inform their strategic decisions, enhancing their overall operational efficiency. This capability empowers teams to focus on analysis rather than data handling, leading to sustained growth and innovation.
  • 6
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next