HyperCrawl is an innovative web crawler tailored specifically for LLM and RAG applications, designed to create efficient retrieval engines. Our primary aim was to enhance the retrieval process by minimizing the time spent crawling various domains. We implemented several advanced techniques to forge a fresh ML-focused approach to web crawling. Rather than loading each webpage sequentially (similar to waiting in line at a grocery store), it simultaneously requests multiple web pages (akin to placing several online orders at once). This strategy effectively eliminates idle waiting time, allowing the crawler to engage in other tasks. By maximizing concurrency, the crawler efficiently manages numerous operations at once, significantly accelerating the retrieval process compared to processing only a limited number of tasks. Additionally, HyperLLM optimizes connection time and resources by reusing established connections, much like opting to use a reusable shopping bag rather than acquiring a new one for every purchase. This innovative approach not only streamlines the crawling process but also enhances overall system performance.