Best Relational Database for Apache Spark

Find and compare the best Relational Database for Apache Spark in 2025

Use the comparison tool below to compare the top Relational Database for Apache Spark on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    SingleStore Reviews

    SingleStore

    SingleStore

    $0.69 per hour
    1 Rating
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 2
    IBM Cloud SQL Query Reviews

    IBM Cloud SQL Query

    IBM

    $5.00/Terabyte-Month
    Experience serverless and interactive data querying with IBM Cloud Object Storage, enabling you to analyze your data directly at its source without the need for ETL processes, databases, or infrastructure management. IBM Cloud SQL Query leverages Apache Spark, a high-performance, open-source data processing engine designed for quick and flexible analysis, allowing SQL queries without requiring ETL or schema definitions. You can easily perform data analysis on your IBM Cloud Object Storage via our intuitive query editor and REST API. With a pay-per-query pricing model, you only incur costs for the data that is scanned, providing a cost-effective solution that allows for unlimited queries. To enhance both savings and performance, consider compressing or partitioning your data. Furthermore, IBM Cloud SQL Query ensures high availability by executing queries across compute resources located in various facilities. Supporting multiple data formats, including CSV, JSON, and Parquet, it also accommodates standard ANSI SQL for your querying needs, making it a versatile tool for data analysis. This capability empowers organizations to make data-driven decisions more efficiently than ever before.
  • 3
    Apache Phoenix Reviews

    Apache Phoenix

    Apache Software Foundation

    Free
    Apache Phoenix provides low-latency OLTP and operational analytics on Hadoop by merging the advantages of traditional SQL with the flexibility of NoSQL. It utilizes HBase as its underlying storage, offering full ACID transaction support alongside late-bound, schema-on-read capabilities. Fully compatible with other Hadoop ecosystem tools such as Spark, Hive, Pig, Flume, and MapReduce, it establishes itself as a reliable data platform for OLTP and operational analytics through well-defined, industry-standard APIs. When a SQL query is executed, Apache Phoenix converts it into a series of HBase scans, managing these scans to deliver standard JDBC result sets seamlessly. The framework's direct interaction with the HBase API, along with the implementation of coprocessors and custom filters, enables performance metrics that can reach milliseconds for simple queries and seconds for larger datasets containing tens of millions of rows. This efficiency positions Apache Phoenix as a formidable choice for businesses looking to enhance their data processing capabilities in a Big Data environment.
  • Previous
  • You're on page 1
  • Next