Best Real-Time Operating Systems (RTOS) for Mac of 2025

Find and compare the best Real-Time Operating Systems (RTOS) for Mac in 2025

Use the comparison tool below to compare the top Real-Time Operating Systems (RTOS) for Mac on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Mbed OS Reviews
    Arm Mbed OS is an open-source operating system tailored for IoT applications, providing all the essential tools for creating IoT devices. This robust OS is equipped to support smart and connected products built on Arm Cortex-M architecture, offering features such as machine learning, secure connectivity stacks, an RTOS kernel, and drivers for various sensors and I/O devices. Specifically designed for the Internet of Things, Arm Mbed OS integrates capabilities in connectivity, machine learning, networking, and security, complemented by a wealth of software libraries, development boards, tutorials, and practical examples. It fosters collaboration across a vast ecosystem, supporting over 70 partners in silicon, modules, cloud services, and OEMs, thereby enhancing choices for developers. By leveraging the Mbed OS API, developers can maintain clean, portable, and straightforward application code while benefiting from advanced security, communication, and machine learning functionalities. This cohesive solution ultimately streamlines the development process, significantly lowering costs, minimizing time investment, and reducing associated risks. Furthermore, Mbed OS empowers innovation, enabling developers to rapidly prototype and deploy IoT solutions with confidence.
  • 2
    Zephyr Reviews
    Ranging from basic embedded environmental sensors and LED wearables to advanced embedded controllers, smartwatches, and IoT wireless applications, this system incorporates configurable architecture-specific stack-overflow protection, kernel object and device driver permission tracking, and thread isolation enhanced by thread-level memory protection across x86, ARC, and ARM architectures, as well as userspace and memory domains. For systems lacking MMU/MPU and those limited by memory capacity, it enables the integration of application-specific code with a tailored kernel to form a monolithic image that can be loaded and run on the hardware of the system. In this setup, both the application and kernel code operate within a unified address space, facilitating efficient resource utilization and performance optimization. This design ensures that even resource-constrained environments can effectively leverage complex applications and functionalities.
  • Previous
  • You're on page 1
  • Next