Best Query Engines for Apache Iceberg

Find and compare the best Query Engines for Apache Iceberg in 2025

Use the comparison tool below to compare the top Query Engines for Apache Iceberg on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Apache Hive Reviews

    Apache Hive

    Apache Software Foundation

    1 Rating
    Apache Hive is a data warehouse solution that enables the efficient reading, writing, and management of substantial datasets stored across distributed systems using SQL. It allows users to apply structure to pre-existing data in storage. To facilitate user access, it comes equipped with a command line interface and a JDBC driver. As an open-source initiative, Apache Hive is maintained by dedicated volunteers at the Apache Software Foundation. Initially part of the Apache® Hadoop® ecosystem, it has since evolved into an independent top-level project. We invite you to explore the project further and share your knowledge to enhance its development. Users typically implement traditional SQL queries through the MapReduce Java API, which can complicate the execution of SQL applications on distributed data. However, Hive simplifies this process by offering a SQL abstraction that allows for the integration of SQL-like queries, known as HiveQL, into the underlying Java framework, eliminating the need to delve into the complexities of the low-level Java API. This makes working with large datasets more accessible and efficient for developers.
  • 2
    Trino Reviews
    Trino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape.
  • 3
    Tabular Reviews

    Tabular

    Tabular

    $100 per month
    Tabular is an innovative open table storage solution designed by the same team behind Apache Iceberg, allowing seamless integration with various computing engines and frameworks. By leveraging this technology, users can significantly reduce both query times and storage expenses, achieving savings of up to 50%. It centralizes the enforcement of role-based access control (RBAC) policies, ensuring data security is consistently maintained. The platform is compatible with multiple query engines and frameworks, such as Athena, BigQuery, Redshift, Snowflake, Databricks, Trino, Spark, and Python, offering extensive flexibility. With features like intelligent compaction and clustering, as well as other automated data services, Tabular further enhances efficiency by minimizing storage costs and speeding up query performance. It allows for unified data access at various levels, whether at the database or table. Additionally, managing RBAC controls is straightforward, ensuring that security measures are not only consistent but also easily auditable. Tabular excels in usability, providing robust ingestion capabilities and performance, all while maintaining effective RBAC management. Ultimately, it empowers users to select from a variety of top-tier compute engines, each tailored to their specific strengths, while also enabling precise privilege assignments at the database, table, or even column level. This combination of features makes Tabular a powerful tool for modern data management.
  • 4
    Apache Impala Reviews
    Impala offers rapid response times and accommodates numerous concurrent users for business intelligence and analytical inquiries within the Hadoop ecosystem, supporting technologies such as Iceberg, various open data formats, and multiple cloud storage solutions. Additionally, it exhibits linear scalability, even when deployed in environments with multiple tenants. The platform seamlessly integrates with Hadoop's native security measures and employs Kerberos for user authentication, while the Ranger module provides a means to manage permissions, ensuring that only authorized users and applications can access specific data. You can leverage the same file formats, data types, metadata, and frameworks for security and resource management as those used in your Hadoop setup, avoiding unnecessary infrastructure and preventing data duplication or conversion. For users familiar with Apache Hive, Impala is compatible with the same metadata and ODBC driver, streamlining the transition. It also supports SQL, which eliminates the need to develop a new implementation from scratch. With Impala, a greater number of users can access and analyze a wider array of data through a unified repository, relying on metadata that tracks information right from the source to analysis. This unified approach enhances efficiency and optimizes data accessibility across various applications.
  • 5
    PuppyGraph Reviews
    PuppyGraph allows you to effortlessly query one or multiple data sources through a cohesive graph model. Traditional graph databases can be costly, require extensive setup time, and necessitate a specialized team to maintain. They often take hours to execute multi-hop queries and encounter difficulties when managing datasets larger than 100GB. Having a separate graph database can complicate your overall architecture due to fragile ETL processes, ultimately leading to increased total cost of ownership (TCO). With PuppyGraph, you can connect to any data source, regardless of its location, enabling cross-cloud and cross-region graph analytics without the need for intricate ETLs or data duplication. By directly linking to your data warehouses and lakes, PuppyGraph allows you to query your data as a graph without the burden of constructing and maintaining lengthy ETL pipelines typical of conventional graph database configurations. There's no longer a need to deal with delays in data access or unreliable ETL operations. Additionally, PuppyGraph resolves scalability challenges associated with graphs by decoupling computation from storage, allowing for more efficient data handling. This innovative approach not only enhances performance but also simplifies your data management strategy.
  • 6
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 7
    Presto Reviews

    Presto

    Presto Foundation

    Presto serves as an open-source distributed SQL query engine designed for executing interactive analytic queries across data sources that can range in size from gigabytes to petabytes. It addresses the challenges faced by data engineers who often navigate multiple query languages and interfaces tied to isolated databases and storage systems. Presto stands out as a quick and dependable solution by offering a unified ANSI SQL interface for comprehensive data analytics and your open lakehouse. Relying on different engines for various workloads often leads to the necessity of re-platforming in the future. However, with Presto, you benefit from a singular, familiar ANSI SQL language and one engine for all your analytic needs, negating the need to transition to another lakehouse engine. Additionally, it efficiently accommodates both interactive and batch workloads, handling small to large datasets and scaling from just a few users to thousands. By providing a straightforward ANSI SQL interface for all your data residing in varied siloed systems, Presto effectively integrates your entire data ecosystem, fostering seamless collaboration and accessibility across platforms. Ultimately, this integration empowers organizations to make more informed decisions based on a comprehensive view of their data landscape.
  • 8
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 9
    Dremio Reviews
    Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.
  • Previous
  • You're on page 1
  • Next