Best Prompt Management Tools for Hugging Face

Find and compare the best Prompt Management tools for Hugging Face in 2025

Use the comparison tool below to compare the top Prompt Management tools for Hugging Face on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Langfuse Reviews

    Langfuse

    Langfuse

    $29/month
    1 Rating
    Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
  • 2
    Agenta Reviews

    Agenta

    Agenta

    Free
    Collaborate effectively on prompts and assess LLM applications with assurance using Agenta, a versatile platform that empowers teams to swiftly develop powerful LLM applications. Build an interactive playground linked to your code, allowing the entire team to engage in experimentation and collaboration seamlessly. Methodically evaluate various prompts, models, and embeddings prior to launching into production. Share a link to collect valuable human feedback from team members, fostering a collaborative environment. Agenta is compatible with all frameworks, such as Langchain and Lama Index, as well as model providers, including OpenAI, Cohere, Huggingface, and self-hosted models. Additionally, the platform offers insights into the costs, latency, and chain of calls associated with your LLM application. Users can create straightforward LLM apps right from the user interface, but for those seeking to develop more tailored applications, coding in Python is necessary. Agenta stands out as a model-agnostic tool that integrates with a wide variety of model providers and frameworks, though it currently only supports an SDK in Python. This flexibility ensures that teams can adapt Agenta to their specific needs while maintaining a high level of functionality.
  • 3
    Comet LLM Reviews

    Comet LLM

    Comet LLM

    Free
    CometLLM serves as a comprehensive platform for recording and visualizing your LLM prompts and chains. By utilizing CometLLM, you can discover effective prompting techniques, enhance your troubleshooting processes, and maintain consistent workflows. It allows you to log not only your prompts and responses but also includes details such as prompt templates, variables, timestamps, duration, and any necessary metadata. The user interface provides the capability to visualize both your prompts and their corresponding responses seamlessly. You can log chain executions with the desired level of detail, and similarly, visualize these executions through the interface. Moreover, when you work with OpenAI chat models, the tool automatically tracks your prompts for you. It also enables you to monitor and analyze user feedback effectively. The UI offers the feature to compare your prompts and chain executions through a diff view. Comet LLM Projects are specifically designed to aid in conducting insightful analyses of your logged prompt engineering processes. Each column in the project corresponds to a specific metadata attribute that has been recorded, meaning the default headers displayed can differ based on the particular project you are working on. Thus, CometLLM not only simplifies prompt management but also enhances your overall analytical capabilities.
  • 4
    DagsHub Reviews

    DagsHub

    DagsHub

    $9 per month
    DagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains.
  • 5
    Literal AI Reviews
    Literal AI is a collaborative platform crafted to support engineering and product teams in the creation of production-ready Large Language Model (LLM) applications. It features an array of tools focused on observability, evaluation, and analytics, which allows for efficient monitoring, optimization, and integration of different prompt versions. Among its noteworthy functionalities are multimodal logging, which incorporates vision, audio, and video, as well as prompt management that includes versioning and A/B testing features. Additionally, it offers a prompt playground that allows users to experiment with various LLM providers and configurations. Literal AI is designed to integrate effortlessly with a variety of LLM providers and AI frameworks, including OpenAI, LangChain, and LlamaIndex, and comes equipped with SDKs in both Python and TypeScript for straightforward code instrumentation. The platform further facilitates the development of experiments against datasets, promoting ongoing enhancements and minimizing the risk of regressions in LLM applications. With these capabilities, teams can not only streamline their workflows but also foster innovation and ensure high-quality outputs in their projects.
  • 6
    Expanse Reviews
    Unlock the complete potential of AI within your organization and among your team to accomplish more efficiently and with reduced effort. Gain quick access to top-tier commercial AI solutions and open-source LLMs with ease. Experience the most user-friendly method for developing, organizing, and utilizing your preferred prompts in daily tasks, whether within Expanse or any application on your operating system. Assemble a personalized collection of AI experts and assistants for instant knowledge and support when needed. Actions serve as reusable guidelines for everyday activities and repetitive jobs, facilitating the effective implementation of AI. Effortlessly design and enhance roles, actions, and snippets to fit your needs. Expanse intelligently monitors context to recommend the most appropriate prompt for each task at hand. You can effortlessly share your prompts with your colleagues or a broader audience. With a sleek design and careful engineering, this platform simplifies, accelerates, and secures your AI interactions. Mastering AI usage is within reach, as there is a shortcut available for virtually every process. Furthermore, you can seamlessly incorporate the most advanced models, including those from the open-source community, enhancing your workflow and productivity.
  • Previous
  • You're on page 1
  • Next