JOpt.TourOptimizer
If you are developing software for Logistics Dispatch Solutions, which contain challenges:
-For staff dispatching, such as sales reps, mobile service, or workforce?
-For truck shipment allocation in daily transportation and logistics (scheduling, tour optimization, etc.)?
-For waste management and District Planning?
-Generally, highly constrained problem sets?
And your product does not have an automized optimization engine?
Then JOpt is the perfect fit for your product and can help you to save money, time, and workforce, letting you concentrate on your core business.
JOpt.TourOptimizer is an adaptable component to solve VRP, CVRP, and VRPTW class problems for any route optimization in logistics or similar fields. It comes as a Java library or in Docker Container utilizing the Spring Framework and Swagger.
Learn more
OORT DataHub
Our decentralized platform streamlines AI data collection and labeling through a worldwide contributor network. By combining crowdsourcing with blockchain technology, we deliver high-quality, traceable datasets.
Platform Highlights:
Worldwide Collection: Tap into global contributors for comprehensive data gathering
Blockchain Security: Every contribution tracked and verified on-chain
Quality Focus: Expert validation ensures exceptional data standards
Platform Benefits:
Rapid scaling of data collection
Complete data providence tracking
Validated datasets ready for AI use
Cost-efficient global operations
Flexible contributor network
How It Works:
Define Your Needs: Create your data collection task
Community Activation: Global contributors notified and start gathering data
Quality Control: Human verification layer validates all contributions
Sample Review: Get dataset sample for approval
Full Delivery: Complete dataset delivered once approved
Learn more
broot
The ROOT data analysis framework is widely utilized in High Energy Physics (HEP) and features its own file output format (.root). It seamlessly integrates with software developed in C++, while for Python users, there is an interface called pyROOT. However, pyROOT has compatibility issues with python3.4. To address this, broot is a compact library designed to transform data stored in Python's numpy ndarrays into ROOT files, structuring them with a branch for each array. This library aims to offer a standardized approach for exporting Python numpy data structures into ROOT files. Furthermore, it is designed to be portable and compatible with both Python2 and Python3, as well as ROOT versions 5 and 6, without necessitating changes to the ROOT components themselves—only a standard installation is needed. Users should find that installing the library requires minimal effort, as they only need to compile the library once or choose to install it as a Python package, making it a convenient tool for data analysis. Additionally, this ease of use encourages more researchers to adopt ROOT in their workflows.
Learn more
NumPy
Fast and adaptable, the concepts of vectorization, indexing, and broadcasting in NumPy have become the benchmark for array computation in the present day. This powerful library provides an extensive array of mathematical functions, random number generators, linear algebra capabilities, Fourier transforms, and beyond. NumPy is compatible with a diverse array of hardware and computing environments, seamlessly integrating with distributed systems, GPU libraries, and sparse array frameworks. At its core, NumPy is built upon highly optimized C code, which allows users to experience the speed associated with compiled languages while enjoying the flexibility inherent to Python. The high-level syntax of NumPy makes it user-friendly and efficient for programmers across various backgrounds and skill levels. By combining the computational efficiency of languages like C and Fortran with the accessibility of Python, NumPy simplifies complex tasks, resulting in clear and elegant solutions. Ultimately, this library empowers users to tackle a wide range of numerical problems with confidence and ease.
Learn more