Fatigue Essentials
Fatigue Essentials is a desktop software designed to streamline the process of structural fatigue analysis. This application offers an intuitive interface for performing stress-life evaluations, utilizing either traditional stress calculations or integrating with FEMAP™ to leverage finite element analysis results. The program is designed with a user-friendly tree structure that guides users through various stages of analysis, starting with selections related to loads, materials, and spectrum branches. Each section allows for different variations of analysis or methods of input. Users can view analysis results directly on the screen, which can be easily copied into reports or visualized as damage contour plots in FEMAP. It encompasses a wide range of engineering needs, featuring a classic mode that allows for manual input of stresses and a professional mode linked with FEMAP, which can read nodal stresses and generate damage contour visualizations. Additionally, users have the flexibility to choose between interactive input or file uploads for entering stresses and cycles, enhancing the application's versatility. Ultimately, Fatigue Essentials stands out as an essential tool for engineers engaged in fatigue analysis.
Learn more
nCode DesignLife
nCode DesignLife serves as a proactive design tool that pinpoints essential areas and estimates realistic fatigue lifespans based on top finite element (FE) analysis results applicable to both metals and composites. This innovative tool empowers design engineers to enhance their approach beyond basic stress assessments, enabling them to simulate real-world loading scenarios and thereby mitigate the risks of both under-design and over-design in their products, which can lead to expensive modifications later on. Additionally, the software offers features like virtual shaker testing, fatigue analysis for welds, vibration fatigue assessments, crack growth monitoring, fatigue evaluation for composites, and thermo-mechanical fatigue studies. It leverages advanced technologies for analyzing multiaxial stress, weld integrity, short-fiber composites, vibrational impacts, crack propagation, and thermal stress fatigue. With a user-friendly graphical interface, it facilitates comprehensive fatigue analysis using data from leading FEA tools such as ANSYS, Nastran, Abaqus, Altair OptiStruct, LS-Dyna, among others. Moreover, it incorporates multi-threaded and distributed processing capabilities, enabling efficient handling of large finite element models and optimizing overall usage schedules. This powerful combination of features ultimately ensures that engineers can deliver more reliable and efficient designs.
Learn more
Ansys Sherlock
Ansys Sherlock stands out as the sole electronics design tool based on reliability physics, delivering swift and precise lifespan forecasts for electronic components, boards, and systems during the initial design phases. This automated analysis tool not only accelerates the design process but also effectively circumvents the traditional "test-fail-fix-repeat" methodology by allowing designers to meticulously simulate the interactions between silicon, metal layers, semiconductor packages, printed circuit boards (PCBs), and assemblies to identify potential failure risks stemming from thermal, mechanical, and manufacturing stresses prior to creating a prototype. With its extensive library of over 500,000 components, Sherlock efficiently transforms electronic computer-aided design (ECAD) files into detailed computational fluid dynamics (CFD) and finite element analysis (FEA) models. Each generated model is crafted with precise geometries and material characteristics, offering a comprehensive translation of stress data. This innovative approach not only enhances the design process but also significantly reduces time-to-market for electronic products.
Learn more
MSC Nastran
MSC Nastran is a versatile application for multidisciplinary structural analysis, allowing engineers to conduct various assessments, including static, dynamic, and thermal analyses, in both linear and nonlinear contexts. This software integrates automated structural optimization and award-winning fatigue analysis technologies, all powered by advanced computing capabilities. Engineers leverage MSC Nastran to guarantee that structural systems possess the required strength, stiffness, and longevity to prevent failures such as excessive stresses, resonance, buckling, or harmful deformations that could jeopardize structural integrity and safety. Additionally, MSC Nastran serves to enhance the cost-effectiveness and comfort of passenger experiences in structural designs. By optimizing performance in existing frameworks or creating distinctive product features, this tool provides a competitive edge within the industry. Furthermore, it assists in addressing potential structural problems that might arise during a product's operational life, thereby minimizing downtime and reducing associated costs. Ultimately, MSC Nastran empowers engineers to innovate and refine their designs effectively.
Learn more