Best fal.ai Alternatives in 2025
Find the top alternatives to fal.ai currently available. Compare ratings, reviews, pricing, and features of fal.ai alternatives in 2025. Slashdot lists the best fal.ai alternatives on the market that offer competing products that are similar to fal.ai. Sort through fal.ai alternatives below to make the best choice for your needs
-
1
Together AI
Together AI
$0.0001 per 1k tokensWe are ready to meet all your business needs, whether it is quick engineering, fine-tuning or training. The Together Inference API makes it easy to integrate your new model in your production application. Together AI's elastic scaling and fastest performance allows it to grow with you. To increase accuracy and reduce risks, you can examine how models are created and what data was used. You are the owner of the model that you fine-tune and not your cloud provider. Change providers for any reason, even if the price changes. Store data locally or on our secure cloud to maintain complete data privacy. -
2
Nscale
Nscale
Nscale is a hyperscaler that is engineered for AI. It offers high-performance computing optimized to train, fine-tune, and handle intensive workloads. Vertically integrated across Europe, from our data centers to software stack, to deliver unparalleled performance, efficiency and sustainability. Our AI cloud platform allows you to access thousands of GPUs that are tailored to your needs. A fully integrated platform will help you reduce costs, increase revenue, and run AI workloads more efficiently. Our platform simplifies the journey from development through to production, whether you use Nscale's AI/ML tools built-in or your own. The Nscale Marketplace provides users with access to a variety of AI/ML resources and tools, allowing for efficient and scalable model deployment and development. Serverless allows for seamless, scalable AI without the need to manage any infrastructure. It automatically scales up to meet demand and ensures low latency, cost-effective inference, for popular generative AI model. -
3
Ori GPU Cloud
Ori
$3.24 per monthLaunch GPU-accelerated instances that are highly configurable for your AI workload and budget. Reserve thousands of GPUs for training and inference in a next generation AI data center. The AI world is moving to GPU clouds in order to build and launch groundbreaking models without having the hassle of managing infrastructure or scarcity of resources. AI-centric cloud providers are outperforming traditional hyperscalers in terms of availability, compute costs, and scaling GPU utilization for complex AI workloads. Ori has a large pool with different GPU types that are tailored to meet different processing needs. This ensures that a greater concentration of powerful GPUs are readily available to be allocated compared to general purpose clouds. Ori offers more competitive pricing, whether it's for dedicated servers or on-demand instances. Our GPU compute costs are significantly lower than the per-hour and per-use pricing of legacy cloud services. -
4
Mystic
Mystic
FreeYou can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI. -
5
Oblivus
Oblivus
$0.29 per hourWe have the infrastructure to meet all your computing needs, whether you need one or thousands GPUs or one vCPU or tens of thousand vCPUs. Our resources are available whenever you need them. Our platform makes switching between GPU and CPU instances a breeze. You can easily deploy, modify and rescale instances to meet your needs. You can get outstanding machine learning performance without breaking your bank. The latest technology for a much lower price. Modern GPUs are built to meet your workload demands. Get access to computing resources that are tailored for your models. Our OblivusAI OS allows you to access libraries and leverage our infrastructure for large-scale inference. Use our robust infrastructure to unleash the full potential of gaming by playing games in settings of your choosing. -
6
GMI Cloud
GMI Cloud
$2.50 per hourGMI GPU Cloud allows you to create generative AI applications within minutes. GMI Cloud offers more than just bare metal. Train, fine-tune and infer the latest models. Our clusters come preconfigured with popular ML frameworks and scalable GPU containers. Instantly access the latest GPUs to power your AI workloads. We can provide you with flexible GPUs on-demand or dedicated private cloud instances. Our turnkey Kubernetes solution maximizes GPU resources. Our advanced orchestration tools make it easy to allocate, deploy and monitor GPUs or other nodes. Create AI applications based on your data by customizing and serving models. GMI Cloud allows you to deploy any GPU workload quickly, so that you can focus on running your ML models and not managing infrastructure. Launch pre-configured environment and save time building container images, downloading models, installing software and configuring variables. You can also create your own Docker images to suit your needs. -
7
Deep Infra
Deep Infra
$0.70 per 1M input tokensSelf-service machine learning platform that allows you to turn models into APIs with just a few mouse clicks. Sign up for a Deep Infra Account using GitHub, or login using GitHub. Choose from hundreds of popular ML models. Call your model using a simple REST API. Our serverless GPUs allow you to deploy models faster and cheaper than if you were to build the infrastructure yourself. Depending on the model, we have different pricing models. Some of our models have token-based pricing. The majority of models are charged by the time it takes to execute an inference. This pricing model allows you to only pay for the services you use. You can easily scale your business as your needs change. There are no upfront costs or long-term contracts. All models are optimized for low latency and inference performance on A100 GPUs. Our system will automatically scale up the model based on your requirements. -
8
Qubrid AI
Qubrid AI
$0.68/hour/ GPU Qubrid AI is a company that specializes in Artificial Intelligence. Its mission is to solve complex real-world problems across multiple industries. Qubrid AI’s software suite consists of AI Hub, an all-in-one shop for AI models, AI Compute GPU cloud and On-Prem appliances, and AI Data Connector. You can train infer-leading models, or your own custom creations. All within a streamlined and user-friendly interface. Test and refine models with ease. Then, deploy them seamlessly to unlock the power AI in your projects. AI Hub enables you to embark on a journey of AI, from conception to implementation, in a single powerful platform. Our cutting-edge AI Compute Platform harnesses the power from GPU Cloud and On Prem Server Appliances in order to efficiently develop and operate next generation AI applications. Qubrid is a team of AI developers, research teams and partner teams focused on enhancing the unique platform to advance scientific applications. -
9
NVIDIA Triton Inference Server
NVIDIA
FreeNVIDIA Triton™, an inference server, delivers fast and scalable AI production-ready. Open-source inference server software, Triton inference servers streamlines AI inference. It allows teams to deploy trained AI models from any framework (TensorFlow or NVIDIA TensorRT®, PyTorch or ONNX, XGBoost or Python, custom, and more on any GPU or CPU-based infrastructure (cloud or data center, edge, or edge). Triton supports concurrent models on GPUs to maximize throughput. It also supports x86 CPU-based inferencing and ARM CPUs. Triton is a tool that developers can use to deliver high-performance inference. It integrates with Kubernetes to orchestrate and scale, exports Prometheus metrics and supports live model updates. Triton helps standardize model deployment in production. -
10
VESSL AI
VESSL AI
$100 + compute/month Fully managed infrastructure, tools and workflows allow you to build, train and deploy models faster. Scale inference and deploy custom AI & LLMs in seconds on any infrastructure. Schedule batch jobs to handle your most demanding tasks, and only pay per second. Optimize costs by utilizing GPUs, spot instances, and automatic failover. YAML simplifies complex infrastructure setups by allowing you to train with a single command. Automate the scaling up of workers during periods of high traffic, and scaling down to zero when inactive. Deploy cutting edge models with persistent endpoints within a serverless environment to optimize resource usage. Monitor system and inference metrics, including worker counts, GPU utilization, throughput, and latency in real-time. Split traffic between multiple models to evaluate. -
11
Brev.dev
NVIDIA
$0.04 per hourFind, provision and configure AI-ready Cloud instances for development, training and deployment. Install CUDA and Python automatically, load the model and SSH in. Brev.dev can help you find a GPU to train or fine-tune your model. A single interface for AWS, GCP and Lambda GPU clouds. Use credits as you have them. Choose an instance based upon cost & availability. A CLI that automatically updates your SSH configuration, ensuring it is done securely. Build faster using a better development environment. Brev connects you to cloud providers in order to find the best GPU for the lowest price. It configures the GPU and wraps SSH so that your code editor can connect to the remote machine. Change your instance. Add or remove a graphics card. Increase the size of your hard drive. Set up your environment so that your code runs always and is easy to share or copy. You can either create your own instance or use a template. The console should provide you with a few template options. -
12
There are options for every business to train deep and machine learning models efficiently. There are AI accelerators that can be used for any purpose, from low-cost inference to high performance training. It is easy to get started with a variety of services for development or deployment. Tensor Processing Units are ASICs that are custom-built to train and execute deep neural network. You can train and run more powerful, accurate models at a lower cost and with greater speed and scale. NVIDIA GPUs are available to assist with cost-effective inference and scale-up/scale-out training. Deep learning can be achieved by leveraging RAPID and Spark with GPUs. You can run GPU workloads on Google Cloud, which offers industry-leading storage, networking and data analytics technologies. Compute Engine allows you to access CPU platforms when you create a VM instance. Compute Engine provides a variety of Intel and AMD processors to support your VMs.
-
13
NetMind AI
NetMind AI
NetMind.AI, a decentralized AI ecosystem and computing platform, is designed to accelerate global AI innovations. It offers AI computing power that is affordable and accessible to individuals, companies, and organizations of any size by leveraging idle GPU resources around the world. The platform offers a variety of services including GPU rental, serverless Inference, as well as an AI ecosystem that includes data processing, model development, inference and agent development. Users can rent GPUs for competitive prices, deploy models easily with serverless inference on-demand, and access a variety of open-source AI APIs with low-latency, high-throughput performance. NetMind.AI allows contributors to add their idle graphics cards to the network and earn NetMind Tokens. These tokens are used to facilitate transactions on the platform. Users can pay for services like training, fine-tuning and inference as well as GPU rentals. -
14
Run:AI
Run:AI
Virtualization Software for AI Infrastructure. Increase GPU utilization by having visibility and control over AI workloads. Run:AI has created the first virtualization layer in the world for deep learning training models. Run:AI abstracts workloads from the underlying infrastructure and creates a pool of resources that can dynamically provisioned. This allows for full utilization of costly GPU resources. You can control the allocation of costly GPU resources. The scheduling mechanism in Run:AI allows IT to manage, prioritize and align data science computing requirements with business goals. IT has full control over GPU utilization thanks to Run:AI's advanced monitoring tools and queueing mechanisms. IT leaders can visualize their entire infrastructure capacity and utilization across sites by creating a flexible virtual pool of compute resources. -
15
NVIDIA Picasso
NVIDIA
NVIDIA Picasso, a cloud service that allows you to build generative AI-powered visual apps, is available. Software creators, service providers, and enterprises can run inference on models, train NVIDIA Edify foundation model models on proprietary data, and start from pre-trained models to create image, video, or 3D content from text prompts. The Picasso service is optimized for GPUs. It streamlines optimization, training, and inference on NVIDIA DGX Cloud. Developers and organizations can train NVIDIA Edify models using their own data, or use models pre-trained by our premier partners. Expert denoising network to create photorealistic 4K images The novel video denoiser and temporal layers generate high-fidelity videos with consistent temporality. A novel optimization framework to generate 3D objects and meshes of high-quality geometry. Cloud service to build and deploy generative AI-powered image and video applications. -
16
Amazon SageMaker makes it easy for you to deploy ML models to make predictions (also called inference) at the best price and performance for your use case. It offers a wide range of ML infrastructure options and model deployment options to meet your ML inference requirements. It integrates with MLOps tools to allow you to scale your model deployment, reduce costs, manage models more efficiently in production, and reduce operational load. Amazon SageMaker can handle all your inference requirements, including low latency (a few seconds) and high throughput (hundreds upon thousands of requests per hour).
-
17
Civo
Civo
$250 per monthSetup should be simple. We've listened carefully to the feedback of our community in order to simplify the developer experience. Our billing model was designed from the ground up for cloud-native. You only pay for what you need and there are no surprises. Launch times that are industry-leading will boost productivity. Accelerate the development cycle, innovate and deliver faster results. Blazing fast, simplified, managed Kubernetes. Host applications and scale them as you need, with a 90-second cluster launch time and a free controller plane. Kubernetes-powered enterprise-class compute instances. Multi-region support, DDoS Protection, bandwidth pooling and all the developer tool you need. Fully managed, auto-scaling machine-learning environment. No Kubernetes, ML or Kubernetes expertise is required. Setup and scale managed databases easily from your Civo dashboard, or our developer API. Scale up or down as needed, and only pay for the resources you use. -
18
Wallaroo.AI
Wallaroo.AI
Wallaroo is the last mile of your machine-learning journey. It helps you integrate ML into your production environment and improve your bottom line. Wallaroo was designed from the ground up to make it easy to deploy and manage ML production-wide, unlike Apache Spark or heavy-weight containers. ML that costs up to 80% less and can scale to more data, more complex models, and more models at a fraction of the cost. Wallaroo was designed to allow data scientists to quickly deploy their ML models against live data. This can be used for testing, staging, and prod environments. Wallaroo supports the most extensive range of machine learning training frameworks. The platform will take care of deployment and inference speed and scale, so you can focus on building and iterating your models. -
19
Neysa Nebula
Neysa
$0.12 per hourNebula enables you to scale and deploy your AI projects quickly and easily2 on a highly robust GPU infrastructure. Nebula Cloud powered by Nvidia GPUs on demand allows you to train and infer models easily and securely. You can also create and manage containerized workloads using Nebula's easy-to-use orchestration layer. Access Nebula’s MLOps, low-code/no code engines and AI-powered applications to quickly and seamlessly deploy AI-powered apps for business teams. Choose from the Nebula containerized AI Cloud, your on-prem or any cloud. The Nebula Unify platform allows you to build and scale AI-enabled use cases for business in a matter weeks, not months. -
20
Amazon EC2 Inf1 Instances
Amazon
$0.228 per hourAmazon EC2 Inf1 instances were designed to deliver high-performance, cost-effective machine-learning inference. Amazon EC2 Inf1 instances offer up to 2.3x higher throughput, and up to 70% less cost per inference compared with other Amazon EC2 instance. Inf1 instances are powered by up to 16 AWS inference accelerators, designed by AWS. They also feature Intel Xeon Scalable 2nd generation processors, and up to 100 Gbps of networking bandwidth, to support large-scale ML apps. These instances are perfect for deploying applications like search engines, recommendation system, computer vision and speech recognition, natural-language processing, personalization and fraud detection. Developers can deploy ML models to Inf1 instances by using the AWS Neuron SDK. This SDK integrates with popular ML Frameworks such as TensorFlow PyTorch and Apache MXNet. -
21
AWS Neuron
Amazon Web Services
It supports high-performance learning on AWS Trainium based Amazon Elastic Compute Cloud Trn1 instances. It supports low-latency and high-performance inference for model deployment on AWS Inferentia based Amazon EC2 Inf1 and AWS Inferentia2-based Amazon EC2 Inf2 instance. Neuron allows you to use popular frameworks such as TensorFlow or PyTorch and train and deploy machine-learning (ML) models using Amazon EC2 Trn1, inf1, and inf2 instances without requiring vendor-specific solutions. AWS Neuron SDK is natively integrated into PyTorch and TensorFlow, and supports Inferentia, Trainium, and other accelerators. This integration allows you to continue using your existing workflows within these popular frameworks, and get started by changing only a few lines. The Neuron SDK provides libraries for distributed model training such as Megatron LM and PyTorch Fully Sharded Data Parallel (FSDP). -
22
Banana
Banana
$7.4868 per hourBanana was founded to fill a critical market gap. Machine learning is highly demanded. But deploying models in production is a highly technical and complex process. Banana focuses on building machine learning infrastructures for the digital economy. We simplify the deployment process, making it as easy as copying and paste an API. This allows companies of any size to access and use the most up-to-date models. We believe the democratization and accessibility of machine learning is one of the key components that will fuel the growth of businesses on a global level. Banana is well positioned to take advantage of this technological gold rush. -
23
Nebius
Nebius
$2.66/hour Platform with NVIDIA H100 Tensor core GPUs. Competitive pricing. Support from a dedicated team. Built for large-scale ML workloads. Get the most from multihost training with thousands of H100 GPUs in full mesh connections using the latest InfiniBand networks up to 3.2Tb/s. Best value: Save up to 50% on GPU compute when compared with major public cloud providers*. You can save even more by purchasing GPUs in large quantities and reserving GPUs. Onboarding assistance: We provide a dedicated engineer to ensure smooth platform adoption. Get your infrastructure optimized, and k8s installed. Fully managed Kubernetes - Simplify the deployment and scaling of ML frameworks using Kubernetes. Use Managed Kubernetes to train GPUs on multiple nodes. Marketplace with ML Frameworks: Browse our Marketplace to find ML-focused libraries and applications, frameworks, and tools that will streamline your model training. Easy to use. All new users are entitled to a one-month free trial. -
24
Lambda GPU Cloud
Lambda
$1.25 per hour 1 RatingThe most complex AI, ML, Deep Learning models can be trained. With just a few clicks, you can scale from a single machine up to a whole fleet of VMs. Lambda Cloud makes it easy to scale up or start your Deep Learning project. You can get started quickly, save compute costs, and scale up to hundreds of GPUs. Every VM is pre-installed with the most recent version of Lambda Stack. This includes major deep learning frameworks as well as CUDA®. drivers. You can access the cloud dashboard to instantly access a Jupyter Notebook development environment on each machine. You can connect directly via the Web Terminal or use SSH directly using one of your SSH keys. Lambda can make significant savings by building scaled compute infrastructure to meet the needs of deep learning researchers. Cloud computing allows you to be flexible and save money, even when your workloads increase rapidly. -
25
Amazon EC2 G5 Instances
Amazon
$1.006 per hourAmazon EC2 instances G5 are the latest generation NVIDIA GPU instances. They can be used to run a variety of graphics-intensive applications and machine learning use cases. They offer up to 3x faster performance for graphics-intensive apps and machine learning inference, and up to 3.33x faster performance for machine learning learning training when compared to Amazon G4dn instances. Customers can use G5 instance for graphics-intensive apps such as video rendering, gaming, and remote workstations to produce high-fidelity graphics real-time. Machine learning customers can use G5 instances to get a high-performance, cost-efficient infrastructure for training and deploying larger and more sophisticated models in natural language processing, computer visualisation, and recommender engines. G5 instances offer up to three times higher graphics performance, and up to forty percent better price performance compared to G4dn instances. They have more ray tracing processor cores than any other GPU based EC2 instance. -
26
Hyperbolic
Hyperbolic
$0.50/hour Hyperbolic is a cloud platform for AI that allows open access. Its goal is to democratize artificial intelligence through affordable and scalable GPU resources. Hyperbolic, by uniting global computing power, enables companies, researchers and data centers to access and monetize GPUs at a fraction the cost of traditional cloud providers. Their mission is to foster an AI ecosystem that fosters collaboration and innovation without the constraints of high computing costs. -
27
Foundry
Foundry
Foundry is the next generation of public cloud powered by an orchestration system that makes it as simple as flicking a switch to access AI computing. Discover the features of our GPU cloud service designed for maximum performance. You can use our GPU cloud services to manage training runs, serve clients, or meet research deadlines. For years, industry giants have invested in infra-teams that build sophisticated tools for cluster management and workload orchestration to abstract the hardware. Foundry makes it possible for everyone to benefit from the compute leverage of a twenty-person team. The current GPU ecosystem operates on a first-come-first-served basis and is fixed-price. The availability of GPUs during peak periods is a problem, as are the wide differences in pricing across vendors. Foundry's price performance is superior to anyone else on the market thanks to a sophisticated mechanism. -
28
JarvisLabs.ai
JarvisLabs.ai
$1,440 per monthWe have all the infrastructure (computers, Frameworks, Cuda) and software (Cuda) you need to train and deploy deep-learning models. You can launch GPU/CPU instances directly from your web browser or automate the process through our Python API. -
29
Substrate
Substrate
$30 per monthSubstrate is a platform for agentic AI. Elegant abstractions, high-performance components such as optimized models, vector databases, code interpreter and model router, as well as vector databases, code interpreter and model router. Substrate was designed to run multistep AI workloads. Substrate will run your task as fast as it can by connecting components. We analyze your workload in the form of a directed acyclic network and optimize it, for example merging nodes which can be run as a batch. Substrate's inference engine schedules your workflow graph automatically with optimized parallelism. This reduces the complexity of chaining several inference APIs. Substrate will parallelize your workload without any async programming. Just connect nodes to let Substrate do the work. Our infrastructure ensures that your entire workload runs on the same cluster and often on the same computer. You won't waste fractions of a sec per task on unnecessary data transport and cross-regional HTTP transport. -
30
NetApp AIPod
NetApp
NetApp AIPod is an advanced AI infrastructure solution designed to simplify the deployment and management of artificial intelligence workflows. Combining NVIDIA-validated systems like DGX BasePOD™ with NetApp’s cloud-connected all-flash storage, it offers a unified platform for analytics, training, and inference. This scalable solution enables organizations to accelerate AI adoption, streamline data workflows, and ensure seamless integration across hybrid cloud environments. With preconfigured, optimized infrastructure, AIPod reduces operational complexity and helps businesses gain insights faster while maintaining robust data security and management capabilities. -
31
Hyperstack
Hyperstack
$0.18 per GPU per hourHyperstack, the ultimate self-service GPUaaS Platform, offers the H100 and A100 as well as the L40, and delivers its services to the most promising AI start ups in the world. Hyperstack was built for enterprise-grade GPU acceleration and optimised for AI workloads. NexGen Cloud offers enterprise-grade infrastructure for a wide range of users from SMEs, Blue-Chip corporations to Managed Service Providers and tech enthusiasts. Hyperstack, powered by NVIDIA architecture and running on 100% renewable energy, offers its services up to 75% cheaper than Legacy Cloud Providers. The platform supports diverse high-intensity workloads such as Generative AI and Large Language Modeling, machine learning and rendering. -
32
NeevCloud
NeevCloud
$1.69/GPU/ hour NeevCloud offers cutting-edge GPU cloud services powered by NVIDIA GPUs such as the H200, GB200 NVL72 and others. These GPUs offer unmatched performance in AI, HPC and data-intensive workloads. Flexible pricing and energy-efficient graphics cards allow you to scale dynamically, reducing costs while increasing output. NeevCloud is ideal for AI model training and scientific research. It also ensures seamless integration, global accessibility, and media production. NeevCloud GPU Cloud Solutions offer unparalleled speed, scalability and sustainability. -
33
KServe
KServe
FreeKubernetes is a highly scalable platform for model inference that uses standards-based models. Trusted AI. KServe, a Kubernetes standard model inference platform, is designed for highly scalable applications. Provides a standardized, performant inference protocol that works across all ML frameworks. Modern serverless inference workloads supported by autoscaling, including a scale up to zero on GPU. High scalability, density packing, intelligent routing with ModelMesh. Production ML serving is simple and pluggable. Pre/post-processing, monitoring and explainability are all possible. Advanced deployments using the canary rollout, experiments and ensembles as well as transformers. ModelMesh was designed for high-scale, high density, and often-changing model use cases. ModelMesh intelligently loads, unloads and transfers AI models to and fro memory. This allows for a smart trade-off between user responsiveness and computational footprint. -
34
FluidStack
FluidStack
$1.49 per monthUnlock prices that are 3-5x higher than those of traditional clouds. FluidStack aggregates GPUs from data centres around the world that are underutilized to deliver the best economics in the industry. Deploy up to 50,000 high-performance servers within seconds using a single platform. In just a few days, you can access large-scale A100 or H100 clusters using InfiniBand. FluidStack allows you to train, fine-tune and deploy LLMs for thousands of GPUs at affordable prices in minutes. FluidStack unifies individual data centers in order to overcome monopolistic GPU pricing. Cloud computing can be made more efficient while allowing for 5x faster computation. Instantly access over 47,000 servers with tier four uptime and security through a simple interface. Train larger models, deploy Kubernetes Clusters, render faster, and stream without latency. Setup with custom images and APIs in seconds. Our engineers provide 24/7 direct support through Slack, email, or phone calls. -
35
Dataoorts GPU Cloud
Dataoorts
$0.20/hour Dataoorts GPU Cloud was built for AI. Dataoorts offers GC2 and a T4s GPU instance to help you excel in your development tasks. Dataoorts GPU instances ensure that computational power is available to everyone, everywhere. Dataoorts can help you with your training, scaling and deployment tasks. Serverless computing allows you to create your own inference endpoint API. -
36
Fireworks AI
Fireworks AI
$0.20 per 1M tokensFireworks works with the leading generative AI researchers in the world to provide the best models at the fastest speed. Independently benchmarked for the fastest inference providers. Use models curated by Fireworks, or our multi-modal and functionality-calling models that we have trained in-house. Fireworks is also the 2nd most popular open-source model provider, and generates more than 1M images/day. Fireworks' OpenAI-compatible interface makes it simple to get started. Dedicated deployments of your models will ensure uptime and performance. Fireworks is HIPAA-compliant and SOC2-compliant and offers secure VPC connectivity and VPN connectivity. Own your data and models. Fireworks hosts serverless models, so there's no need for hardware configuration or deployment. Fireworks.ai provides a lightning fast inference platform to help you serve generative AI model. -
37
Exafunction
Exafunction
Exafunction optimizes deep learning inference workloads, up to a 10% improvement in resource utilization and cost. Instead of worrying about cluster management and fine-tuning performance, focus on building your deep-learning application. Poor utilization of GPU hardware is a common problem in deep learning applications. Exafunction allows any GPU code to be moved to remote resources. This includes spot instances. Your core logic is still an inexpensive CPU instance. Exafunction has been proven to be effective in large-scale autonomous vehicle simulation. These workloads require complex custom models, high numerical reproducibility, and thousands of GPUs simultaneously. Exafunction supports models of major deep learning frameworks. Versioning models and dependencies, such as custom operators, allows you to be certain you are getting the correct results. -
38
Steamship
Steamship
Cloud-hosted AI packages that are managed and cloud-hosted will make it easier to ship AI faster. GPT-4 support is fully integrated. API tokens do not need to be used. Use our low-code framework to build. All major models can be integrated. Get an instant API by deploying. Scale and share your API without having to manage infrastructure. Make prompts, prompt chains, basic Python, and managed APIs. A clever prompt can be turned into a publicly available API that you can share. Python allows you to add logic and routing smarts. Steamship connects with your favorite models and services, so you don't need to learn a different API for each provider. Steamship maintains model output in a standard format. Consolidate training and inference, vector search, endpoint hosting. Import, transcribe or generate text. It can run all the models that you need. ShipQL allows you to query across all the results. Packages are fully-stack, cloud-hosted AI applications. Each instance you create gives you an API and private data workspace. -
39
UbiOps
UbiOps
UbiOps provides an AI infrastructure platform to help teams run AI & ML workloads quickly as reliable and secure Microservices without disrupting their existing workflows. UbiOps can be integrated seamlessly into your data-science workbench in minutes. This will save you time and money by avoiding the hassle of setting up expensive cloud infrastructure. You can use UbiOps as a data science team in a large company or a start-up to launch an AI product. UbiOps is a reliable backbone to any AI or ML services. Scale AI workloads dynamically based on usage, without paying for idle times. Instantly access powerful GPUs for model training and inference, enhanced by serverless, multicloud workload distribution. -
40
Xilinx
Xilinx
The Xilinx AI development platform for AI Inference on Xilinx hardware platforms consists optimized IP, tools and libraries, models, examples, and models. It was designed to be efficient and easy-to-use, allowing AI acceleration on Xilinx FPGA or ACAP. Supports mainstream frameworks as well as the most recent models that can perform diverse deep learning tasks. A comprehensive collection of pre-optimized models is available for deployment on Xilinx devices. Find the closest model to your application and begin retraining! This powerful open-source quantizer supports model calibration, quantization, and fine tuning. The AI profiler allows you to analyze layers in order to identify bottlenecks. The AI library provides open-source high-level Python and C++ APIs that allow maximum portability from the edge to the cloud. You can customize the IP cores to meet your specific needs for many different applications. -
41
Lumino
Lumino
The first hardware and software computing protocol that integrates both to train and fine tune your AI models. Reduce your training costs up to 80%. Deploy your model in seconds using open-source template models or bring your model. Debug containers easily with GPU, CPU and Memory metrics. You can monitor logs live. You can track all models and training set with cryptographic proofs to ensure complete accountability. You can control the entire training process with just a few commands. You can earn block rewards by adding your computer to the networking. Track key metrics like connectivity and uptime. -
42
AWS Inferentia
Amazon
AWS Inferentia Accelerators are designed by AWS for high performance and low cost for deep learning (DL), inference applications. The first-generation AWS Inferentia accelerator powers Amazon Elastic Compute Cloud, Amazon EC2 Inf1 instances. These instances deliver up to 2.3x more throughput and up 70% lower cost per input than comparable GPU-based Amazon EC2 instances. Inf1 instances have been adopted by many customers including Snap, Sprinklr and Money Forward. They have seen the performance and cost savings. The first-generation Inferentia features 8 GB of DDR4 memory per accelerator, as well as a large amount on-chip memory. Inferentia2 has 32 GB of HBM2e, which increases the total memory by 4x and memory bandwidth 10x more than Inferentia. -
43
GPUonCLOUD
GPUonCLOUD
$1 per hourDeep learning, 3D modelling, simulations and distributed analytics take days or even weeks. GPUonCLOUD’s dedicated GPU servers can do it in a matter hours. You may choose pre-configured or pre-built instances that feature GPUs with deep learning frameworks such as TensorFlow and PyTorch. MXNet and TensorRT are also available. OpenCV is a real-time computer-vision library that accelerates AI/ML model building. Some of the GPUs we have are the best for graphics workstations or multi-player accelerated games. Instant jumpstart frameworks improve the speed and agility in the AI/ML environment through effective and efficient management of the environment lifecycle. -
44
NVIDIA TensorRT
NVIDIA
FreeNVIDIA TensorRT provides an ecosystem of APIs to support high-performance deep learning. It includes an inference runtime, model optimizations and a model optimizer that delivers low latency and high performance for production applications. TensorRT, built on the CUDA parallel programing model, optimizes neural networks trained on all major frameworks. It calibrates them for lower precision while maintaining high accuracy and deploys them across hyperscale data centres, workstations and laptops. It uses techniques such as layer and tensor-fusion, kernel tuning, and quantization on all types NVIDIA GPUs from edge devices to data centers. TensorRT is an open-source library that optimizes the inference performance for large language models. -
45
NVIDIA GPU-Optimized AMI
Amazon
$3.06 per hourThe NVIDIA GPU Optimized AMI is a virtual image that accelerates your GPU-accelerated Machine Learning and Deep Learning workloads. This AMI allows you to spin up a GPU accelerated EC2 VM in minutes, with a preinstalled Ubuntu OS and GPU driver. Docker, NVIDIA container toolkit, and Docker are also included. This AMI provides access to NVIDIA’s NGC Catalog. It is a hub of GPU-optimized software for pulling and running performance-tuned docker containers that have been tested and certified by NVIDIA. The NGC Catalog provides free access to containerized AI and HPC applications. It also includes pre-trained AI models, AI SDKs, and other resources. This GPU-optimized AMI comes free, but you can purchase enterprise support through NVIDIA Enterprise. Scroll down to the 'Support information' section to find out how to get support for AMI. -
46
Burncloud
Burncloud
$0.03/hour Burncloud is one of the leading cloud computing providers, focusing on providing businesses with efficient, reliable and secure GPU rental services. Our platform is based on a systemized design that meets the high-performance computing requirements of different enterprises. Core Services Online GPU Rental Services - We offer a wide range of GPU models to rent, including data-center-grade devices and edge consumer computing equipment, in order to meet the diverse computing needs of businesses. Our best-selling products include: RTX4070, RTX3070 Ti, H100PCIe, RTX3090 Ti, RTX3060, NVIDIA4090, L40 RTX3080 Ti, L40S RTX4090, RTX3090, A10, H100 SXM, H100 NVL, A100PCIe 80GB, and many more. Our technical team has a vast experience in IB networking and has successfully set up five 256-node Clusters. Contact the Burncloud customer service team for cluster setup services. -
47
Towhee
Towhee
FreeTowhee can automatically optimize your pipeline for production-ready environments by using our Python API. Towhee supports data conversion for almost 20 unstructured data types, including images, text, and 3D molecular structure. Our services include pipeline optimizations that cover everything from data decoding/encoding to model inference. This makes your pipeline execution 10x more efficient. Towhee integrates with your favorite libraries and tools, making it easy to develop. Towhee also includes a Python method-chaining API that allows you to describe custom data processing pipelines. Schemas are also supported, making it as simple as handling tabular data to process unstructured data. -
48
SuperDuperDB
SuperDuperDB
Create and manage AI applications without the need to move data to complex vector databases and pipelines. Integrate AI, vector search and real-time inference directly with your database. Python is all you need. All your AI models can be deployed in a single, scalable deployment. The AI models and APIs are automatically updated as new data is processed. You don't need to duplicate your data or create an additional database to use vector searching and build on it. SuperDuperDB allows vector search within your existing database. Integrate and combine models such as those from Sklearn PyTorch HuggingFace, with AI APIs like OpenAI, to build even the most complicated AI applications and workflows. With simple Python commands, deploy all your AI models in one environment to automatically compute outputs in your datastore (inference). -
49
SquareFactory
SquareFactory
A platform that manages model, project, and hosting. This platform allows companies to transform data and algorithms into comprehensive, execution-ready AI strategies. Securely build, train, and manage models. You can create products that use AI models from anywhere and at any time. Reduce the risks associated with AI investments while increasing strategic flexibility. Fully automated model testing, evaluation deployment and scaling. From real-time, low latency, high-throughput, inference to batch-running inference. Pay-per-second-of-use model, with an SLA, and full governance, monitoring and auditing tools. A user-friendly interface that serves as a central hub for managing projects, visualizing data, and training models through collaborative and reproducible workflows. -
50
Second State
Second State
OpenAI compatible, fast, lightweight, portable and powered by rust. We work with cloud providers to support microservices in web apps, especially edge cloud/CDN computing providers. Use cases include AI inferences, database accesses, CRM, ecommerce and workflow management. We work with streaming frameworks, databases and data to support embedded functions for data filtering. The serverless functions may be database UDFs. They could be embedded into data ingest streams or query results. Write once and run anywhere. Take full advantage of GPUs. In just 5 minutes, you can get started with the Llama 2 models on your device. Retrieval - Argumented Generation (RAG) has become a popular way to build AI agents using external knowledge bases. Create an HTTP microservice to classify images. It runs YOLO models and Mediapipe models natively at GPU speed.