What Integrates with definity?

Find out what definity integrations exist in 2025. Learn what software and services currently integrate with definity, and sort them by reviews, cost, features, and more. Below is a list of products that definity currently integrates with:

  • 1
    dbt Reviews

    dbt

    dbt Labs

    $100 per user/ month
    207 Ratings
    See Software
    Learn More
    dbt Labs is redefining how data teams work with SQL. Instead of waiting on complex ETL processes, dbt lets data analysts and data engineers build production-ready transformations directly in the warehouse, using code, version control, and CI/CD. This community-driven approach puts power back in the hands of practitioners while maintaining governance and scalability for enterprise use. With a rapidly growing open-source community and an enterprise-grade cloud platform, dbt is at the heart of the modern data stack. It’s the go-to solution for teams who want faster analytics, higher quality data, and the confidence that comes from transparent, testable transformations.
  • 2
    Snowflake Reviews

    Snowflake

    Snowflake

    $2 compute/month
    4 Ratings
    Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
  • 3
    Google Cloud Dataproc Reviews
    Dataproc enhances the speed, simplicity, and security of open source data and analytics processing in the cloud. You can swiftly create tailored OSS clusters on custom machines to meet specific needs. Whether your project requires additional memory for Presto or GPUs for machine learning in Apache Spark, Dataproc facilitates the rapid deployment of specialized clusters in just 90 seconds. The platform offers straightforward and cost-effective cluster management options. Features such as autoscaling, automatic deletion of idle clusters, and per-second billing contribute to minimizing the overall ownership costs of OSS, allowing you to allocate your time and resources more effectively. Built-in security measures, including default encryption, guarantee that all data remains protected. With the JobsAPI and Component Gateway, you can easily manage permissions for Cloud IAM clusters without the need to configure networking or gateway nodes, ensuring a streamlined experience. Moreover, the platform's user-friendly interface simplifies the management process, making it accessible for users at all experience levels.
  • 4
    SQL Reviews
    SQL is a specialized programming language designed specifically for the purpose of retrieving, organizing, and modifying data within relational databases and the systems that manage them. Its use is essential for effective database management and interaction.
  • 5
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics.
  • 6
    Amazon EMR Reviews
    Amazon EMR stands as the leading cloud-based big data solution for handling extensive datasets through popular open-source frameworks like Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto. This platform enables you to conduct Petabyte-scale analyses at a cost that is less than half of traditional on-premises systems and delivers performance more than three times faster than typical Apache Spark operations. For short-duration tasks, you have the flexibility to quickly launch and terminate clusters, incurring charges only for the seconds the instances are active. In contrast, for extended workloads, you can establish highly available clusters that automatically adapt to fluctuating demand. Additionally, if you already utilize open-source technologies like Apache Spark and Apache Hive on-premises, you can seamlessly operate EMR clusters on AWS Outposts. Furthermore, you can leverage open-source machine learning libraries such as Apache Spark MLlib, TensorFlow, and Apache MXNet for data analysis. Integrating with Amazon SageMaker Studio allows for efficient large-scale model training, comprehensive analysis, and detailed reporting, enhancing your data processing capabilities even further. This robust infrastructure is ideal for organizations seeking to maximize efficiency while minimizing costs in their data operations.
  • 7
    Azure Databricks Reviews
    Harness the power of your data and create innovative artificial intelligence (AI) solutions using Azure Databricks, where you can establish your Apache Spark™ environment in just minutes, enable autoscaling, and engage in collaborative projects within a dynamic workspace. This platform accommodates multiple programming languages such as Python, Scala, R, Java, and SQL, along with popular data science frameworks and libraries like TensorFlow, PyTorch, and scikit-learn. With Azure Databricks, you can access the most current versions of Apache Spark and effortlessly connect with various open-source libraries. You can quickly launch clusters and develop applications in a fully managed Apache Spark setting, benefiting from Azure's expansive scale and availability. The clusters are automatically established, optimized, and adjusted to guarantee reliability and performance, eliminating the need for constant oversight. Additionally, leveraging autoscaling and auto-termination features can significantly enhance your total cost of ownership (TCO), making it an efficient choice for data analysis and AI development. This powerful combination of tools and resources empowers teams to innovate and accelerate their projects like never before.
  • Previous
  • You're on page 1
  • Next