What Integrates with ZenML?

Find out what ZenML integrations exist in 2025. Learn what software and services currently integrate with ZenML, and sort them by reviews, cost, features, and more. Below is a list of products that ZenML currently integrates with:

  • 1
    Kubeflow Reviews
    The Kubeflow initiative aims to simplify the process of deploying machine learning workflows on Kubernetes, ensuring they are both portable and scalable. Rather than duplicating existing services, our focus is on offering an easy-to-use platform for implementing top-tier open-source ML systems across various infrastructures. Kubeflow is designed to operate seamlessly wherever Kubernetes is running. It features a specialized TensorFlow training job operator that facilitates the training of machine learning models, particularly excelling in managing distributed TensorFlow training tasks. Users can fine-tune the training controller to utilize either CPUs or GPUs, adapting it to different cluster configurations. In addition, Kubeflow provides functionalities to create and oversee interactive Jupyter notebooks, allowing for tailored deployments and resource allocation specific to data science tasks. You can test and refine your workflows locally before transitioning them to a cloud environment whenever you are prepared. This flexibility empowers data scientists to iterate efficiently, ensuring that their models are robust and ready for production.
  • 2
    Apache Beam Reviews

    Apache Beam

    Apache Software Foundation

    Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies.
  • 3
    Feast Reviews
    Enable your offline data to support real-time predictions seamlessly without the need for custom pipelines. Maintain data consistency between offline training and online inference to avoid discrepancies in results. Streamline data engineering processes within a unified framework for better efficiency. Teams can leverage Feast as the cornerstone of their internal machine learning platforms. Feast eliminates the necessity for dedicated infrastructure management, instead opting to utilize existing resources while provisioning new ones when necessary. If you prefer not to use a managed solution, you are prepared to handle your own Feast implementation and maintenance. Your engineering team is equipped to support both the deployment and management of Feast effectively. You aim to create pipelines that convert raw data into features within a different system and seek to integrate with that system. With specific needs in mind, you want to expand functionalities based on an open-source foundation. Additionally, this approach not only enhances your data processing capabilities but also allows for greater flexibility and customization tailored to your unique business requirements.
  • 4
    AWS AI Services Reviews
    AWS offers pre-configured AI Services that deliver intelligent capabilities for your applications and workflows. These AI Services seamlessly integrate into existing applications to tackle prevalent use cases, including tailored recommendations, enhancing contact center functionality, boosting safety and security measures, and fostering greater customer interaction. Leveraging the same advanced deep learning technology utilized by Amazon.com and its Machine Learning Services ensures that you receive high-quality and precise results from continuously evolving APIs. Furthermore, the beauty of AWS AI Services lies in the fact that no prior machine learning knowledge is necessary. You can effortlessly catalog assets, automate processes, and derive insights from various media and applications. Additionally, these services can help identify absent product components, detect damage to vehicles and structures, and flag irregularities, thereby ensuring thorough quality control. Enhance operational efficiency through automated monitoring that reveals bottlenecks and evaluates the quality and safety of manufacturing processes. Moreover, these services can extract critical information from millions of documents swiftly, making it easier to harness data and drive informed decisions. As a result, businesses can streamline their operations and significantly improve overall productivity.
  • 5
    LangSmith Reviews
    Unexpected outcomes are a common occurrence in software development. With complete insight into the entire sequence of calls, developers can pinpoint the origins of errors and unexpected results in real time with remarkable accuracy. The discipline of software engineering heavily depends on unit testing to create efficient and production-ready software solutions. LangSmith offers similar capabilities tailored specifically for LLM applications. You can quickly generate test datasets, execute your applications on them, and analyze the results without leaving the LangSmith platform. This tool provides essential observability for mission-critical applications with minimal coding effort. LangSmith is crafted to empower developers in navigating the complexities and leveraging the potential of LLMs. We aim to do more than just create tools; we are dedicated to establishing reliable best practices for developers. You can confidently build and deploy LLM applications, backed by comprehensive application usage statistics. This includes gathering feedback, filtering traces, measuring costs and performance, curating datasets, comparing chain efficiencies, utilizing AI-assisted evaluations, and embracing industry-leading practices to enhance your development process. This holistic approach ensures that developers are well-equipped to handle the challenges of LLM integrations.
  • 6
    Polars Reviews
    Polars offers a comprehensive Python API that reflects common data wrangling practices, providing a wide array of functionalities for manipulating DataFrames through an expression language that enables the creation of both efficient and clear code. Developed in Rust, Polars makes deliberate choices to ensure a robust DataFrame API that caters to the Rust ecosystem's needs. It serves not only as a library for DataFrames but also as a powerful backend query engine for your data models, allowing for versatility in data handling and analysis. This flexibility makes it a valuable tool for data scientists and engineers alike.
  • 7
    DBRX Reviews
    We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models.
  • 8
    Apache Airflow Reviews

    Apache Airflow

    The Apache Software Foundation

    Airflow is a community-driven platform designed for the programmatic creation, scheduling, and monitoring of workflows. With its modular architecture, Airflow employs a message queue to manage an unlimited number of workers, making it highly scalable. The system is capable of handling complex operations through its ability to define pipelines using Python, facilitating dynamic pipeline generation. This flexibility enables developers to write code that can create pipelines on the fly. Users can easily create custom operators and expand existing libraries, tailoring the abstraction level to meet their specific needs. The pipelines in Airflow are both concise and clear, with built-in parametrization supported by the robust Jinja templating engine. Eliminate the need for complex command-line operations or obscure XML configurations! Instead, leverage standard Python functionalities to construct workflows, incorporating date-time formats for scheduling and utilizing loops for the dynamic generation of tasks. This approach ensures that you retain complete freedom and adaptability when designing your workflows, allowing you to efficiently respond to changing requirements. Additionally, Airflow's user-friendly interface empowers teams to collaboratively refine and optimize their workflow processes.
  • 9
    Llama Reviews
    Llama (Large Language Model Meta AI) stands as a cutting-edge foundational large language model aimed at helping researchers push the boundaries of their work within this area of artificial intelligence. By providing smaller yet highly effective models like Llama, the research community can benefit even if they lack extensive infrastructure, thus promoting greater accessibility in this dynamic and rapidly evolving domain. Creating smaller foundational models such as Llama is advantageous in the landscape of large language models, as it demands significantly reduced computational power and resources, facilitating the testing of innovative methods, confirming existing research, and investigating new applications. These foundational models leverage extensive unlabeled datasets, making them exceptionally suitable for fine-tuning across a range of tasks. We are offering Llama in multiple sizes (7B, 13B, 33B, and 65B parameters), accompanied by a detailed Llama model card that outlines our development process while adhering to our commitment to Responsible AI principles. By making these resources available, we aim to empower a broader segment of the research community to engage with and contribute to advancements in AI.