Best Yandex Data Proc Alternatives in 2025
Find the top alternatives to Yandex Data Proc currently available. Compare ratings, reviews, pricing, and features of Yandex Data Proc alternatives in 2025. Slashdot lists the best Yandex Data Proc alternatives on the market that offer competing products that are similar to Yandex Data Proc. Sort through Yandex Data Proc alternatives below to make the best choice for your needs
-
1
Fivetran
Fivetran
Fivetran is a comprehensive data integration solution designed to centralize and streamline data movement for organizations of all sizes. With more than 700 pre-built connectors, it effortlessly transfers data from SaaS apps, databases, ERPs, and files into data warehouses and lakes, enabling real-time analytics and AI-driven insights. The platform’s scalable pipelines automatically adapt to growing data volumes and business complexity. Leading companies such as Dropbox, JetBlue, Pfizer, and National Australia Bank rely on Fivetran to reduce data ingestion time from weeks to minutes and improve operational efficiency. Fivetran offers strong security compliance with certifications including SOC 1 & 2, GDPR, HIPAA, ISO 27001, PCI DSS, and HITRUST. Users can programmatically create and manage pipelines through its REST API for seamless extensibility. The platform supports governance features like role-based access controls and integrates with transformation tools like dbt Labs. Fivetran helps organizations innovate by providing reliable, secure, and automated data pipelines tailored to their evolving needs. -
2
Rivery
Rivery
$0.75 Per CreditRivery’s ETL platform consolidates, transforms, and manages all of a company’s internal and external data sources in the cloud. Key Features: Pre-built Data Models: Rivery comes with an extensive library of pre-built data models that enable data teams to instantly create powerful data pipelines. Fully managed: A no-code, auto-scalable, and hassle-free platform. Rivery takes care of the back end, allowing teams to spend time on mission-critical priorities rather than maintenance. Multiple Environments: Rivery enables teams to construct and clone custom environments for specific teams or projects. Reverse ETL: Allows companies to automatically send data from cloud warehouses to business applications, marketing clouds, CPD’s, and more. -
3
BigBI
BigBI
BigBI empowers data professionals to create robust big data pipelines in an interactive and efficient manner, all without requiring any programming skills. By harnessing the capabilities of Apache Spark, BigBI offers remarkable benefits such as scalable processing of extensive datasets, achieving speeds that can be up to 100 times faster. Moreover, it facilitates the seamless integration of conventional data sources like SQL and batch files with contemporary data types, which encompass semi-structured formats like JSON, NoSQL databases, Elastic, and Hadoop, as well as unstructured data including text, audio, and video. Additionally, BigBI supports the amalgamation of streaming data, cloud-based information, artificial intelligence/machine learning, and graphical data, making it a comprehensive tool for data management. This versatility allows organizations to leverage diverse data types and sources, enhancing their analytical capabilities significantly. -
4
Amazon MWAA
Amazon
$0.49 per hourAmazon Managed Workflows for Apache Airflow (MWAA) is a service that simplifies the orchestration of Apache Airflow, allowing users to efficiently establish and manage comprehensive data pipelines in the cloud at scale. Apache Airflow itself is an open-source platform designed for the programmatic creation, scheduling, and oversight of workflows, which are sequences of various processes and tasks. By utilizing Managed Workflows, users can leverage Airflow and Python to design workflows while eliminating the need to handle the complexities of the underlying infrastructure, ensuring scalability, availability, and security. This service adapts its workflow execution capabilities automatically to align with user demands and incorporates AWS security features, facilitating swift and secure data access. Overall, MWAA empowers organizations to focus on their data processes without the burden of infrastructure management. -
5
Astro by Astronomer
Astronomer
Astronomer is the driving force behind Apache Airflow, the de facto standard for expressing data flows as code. Airflow is downloaded more than 4 million times each month and is used by hundreds of thousands of teams around the world. For data teams looking to increase the availability of trusted data, Astronomer provides Astro, the modern data orchestration platform, powered by Airflow. Astro enables data engineers, data scientists, and data analysts to build, run, and observe pipelines-as-code. Founded in 2018, Astronomer is a global remote-first company with hubs in Cincinnati, New York, San Francisco, and San Jose. Customers in more than 35 countries trust Astronomer as their partner for data orchestration. -
6
Azure Event Hubs
Microsoft
$0.03 per hourEvent Hubs provides a fully managed service for real-time data ingestion that is easy to use, reliable, and highly scalable. It enables the streaming of millions of events every second from various sources, facilitating the creation of dynamic data pipelines that allow businesses to quickly address challenges. In times of crisis, you can continue data processing thanks to its geo-disaster recovery and geo-replication capabilities. Additionally, it integrates effortlessly with other Azure services, enabling users to derive valuable insights. Existing Apache Kafka clients can communicate with Event Hubs without requiring code alterations, offering a managed Kafka experience while eliminating the need to maintain individual clusters. Users can enjoy both real-time data ingestion and microbatching on the same stream, allowing them to concentrate on gaining insights rather than managing infrastructure. By leveraging Event Hubs, organizations can rapidly construct real-time big data pipelines and swiftly tackle business issues as they arise, enhancing their operational efficiency. -
7
Nextflow
Seqera Labs
FreeData-driven computational pipelines. Nextflow allows for reproducible and scalable scientific workflows by using software containers. It allows adaptation of scripts written in most common scripting languages. Fluent DSL makes it easy to implement and deploy complex reactive and parallel workflows on clusters and clouds. Nextflow was built on the belief that Linux is the lingua Franca of data science. Nextflow makes it easier to create a computational pipeline that can be used to combine many tasks. You can reuse existing scripts and tools. Additionally, you don't have to learn a new language to use Nextflow. Nextflow supports Docker, Singularity and other containers technology. This, together with integration of the GitHub Code-sharing Platform, allows you write self-contained pipes, manage versions, reproduce any configuration quickly, and allow you to integrate the GitHub code-sharing portal. Nextflow acts as an abstraction layer between the logic of your pipeline and its execution layer. -
8
Google Cloud Dataflow
Google
Data processing that integrates both streaming and batch operations while being serverless, efficient, and budget-friendly. It offers a fully managed service for data processing, ensuring seamless automation in the provisioning and administration of resources. With horizontal autoscaling capabilities, worker resources can be adjusted dynamically to enhance overall resource efficiency. The innovation is driven by the open-source community, particularly through the Apache Beam SDK. This platform guarantees reliable and consistent processing with exactly-once semantics. Dataflow accelerates the development of streaming data pipelines, significantly reducing data latency in the process. By adopting a serverless model, teams can devote their efforts to programming rather than the complexities of managing server clusters, effectively eliminating the operational burdens typically associated with data engineering tasks. Additionally, Dataflow’s automated resource management not only minimizes latency but also optimizes utilization, ensuring that teams can operate with maximum efficiency. Furthermore, this approach promotes a collaborative environment where developers can focus on building robust applications without the distraction of underlying infrastructure concerns. -
9
AWS Data Pipeline
Amazon
$1 per monthAWS Data Pipeline is a robust web service designed to facilitate the reliable processing and movement of data across various AWS compute and storage services, as well as from on-premises data sources, according to defined schedules. This service enables you to consistently access data in its storage location, perform large-scale transformations and processing, and seamlessly transfer the outcomes to AWS services like Amazon S3, Amazon RDS, Amazon DynamoDB, and Amazon EMR. With AWS Data Pipeline, you can effortlessly construct intricate data processing workflows that are resilient, repeatable, and highly available. You can rest assured knowing that you do not need to manage resource availability, address inter-task dependencies, handle transient failures or timeouts during individual tasks, or set up a failure notification system. Additionally, AWS Data Pipeline provides the capability to access and process data that was previously confined within on-premises data silos, expanding your data processing possibilities significantly. This service ultimately streamlines the data management process and enhances operational efficiency across your organization. -
10
Google Cloud Composer
Google
$0.074 per vCPU hourThe managed features of Cloud Composer, along with its compatibility with Apache Airflow, enable you to concentrate on crafting, scheduling, and overseeing your workflows rather than worrying about resource provisioning. Its seamless integration with various Google Cloud products such as BigQuery, Dataflow, Dataproc, Datastore, Cloud Storage, Pub/Sub, and AI Platform empowers users to orchestrate their data pipelines effectively. You can manage your workflows from a single orchestration tool, regardless of whether your pipeline operates on-premises, in multiple clouds, or entirely within Google Cloud. This solution simplifies your transition to the cloud and supports a hybrid data environment by allowing you to orchestrate workflows that span both on-premises setups and the public cloud. By creating workflows that interconnect data, processing, and services across different cloud platforms, you can establish a cohesive data ecosystem that enhances efficiency and collaboration. Additionally, this unified approach not only streamlines operations but also optimizes resource utilization across various environments. -
11
definity
definity
Manage and oversee all operations of your data pipelines without requiring any code modifications. Keep an eye on data flows and pipeline activities to proactively avert outages and swiftly diagnose problems. Enhance the efficiency of pipeline executions and job functionalities to cut expenses while adhering to service level agreements. Expedite code rollouts and platform enhancements while ensuring both reliability and performance remain intact. Conduct data and performance evaluations concurrently with pipeline operations, including pre-execution checks on input data. Implement automatic preemptions of pipeline executions when necessary. The definity solution alleviates the workload of establishing comprehensive end-to-end coverage, ensuring protection throughout every phase and aspect. By transitioning observability to the post-production stage, definity enhances ubiquity, broadens coverage, and minimizes manual intervention. Each definity agent operates seamlessly with every pipeline, leaving no trace behind. Gain a comprehensive perspective on data, pipelines, infrastructure, lineage, and code for all data assets, allowing for real-time detection and the avoidance of asynchronous verifications. Additionally, it can autonomously preempt executions based on input evaluations, providing an extra layer of oversight. -
12
IBM StreamSets
IBM
$1000 per monthIBM® StreamSets allows users to create and maintain smart streaming data pipelines using an intuitive graphical user interface. This facilitates seamless data integration in hybrid and multicloud environments. IBM StreamSets is used by leading global companies to support millions data pipelines, for modern analytics and intelligent applications. Reduce data staleness, and enable real-time information at scale. Handle millions of records across thousands of pipelines in seconds. Drag-and-drop processors that automatically detect and adapt to data drift will protect your data pipelines against unexpected changes and shifts. Create streaming pipelines for ingesting structured, semistructured, or unstructured data to deliver it to multiple destinations. -
13
Kestra
Kestra
Kestra is a free, open-source orchestrator based on events that simplifies data operations while improving collaboration between engineers and users. Kestra brings Infrastructure as Code to data pipelines. This allows you to build reliable workflows with confidence. The declarative YAML interface allows anyone who wants to benefit from analytics to participate in the creation of the data pipeline. The UI automatically updates the YAML definition whenever you make changes to a work flow via the UI or an API call. The orchestration logic can be defined in code declaratively, even if certain workflow components are modified. -
14
Dagster
Dagster Labs
$0Dagster is the cloud-native open-source orchestrator for the whole development lifecycle, with integrated lineage and observability, a declarative programming model, and best-in-class testability. It is the platform of choice data teams responsible for the development, production, and observation of data assets. With Dagster, you can focus on running tasks, or you can identify the key assets you need to create using a declarative approach. Embrace CI/CD best practices from the get-go: build reusable components, spot data quality issues, and flag bugs early. -
15
StreamNative
StreamNative
$1,000 per monthStreamNative transforms the landscape of streaming infrastructure by combining Kafka, MQ, and various other protocols into one cohesive platform, which offers unmatched flexibility and efficiency tailored for contemporary data processing requirements. This integrated solution caters to the varied demands of streaming and messaging within microservices architectures. By delivering a holistic and intelligent approach to both messaging and streaming, StreamNative equips organizations with the tools to effectively manage the challenges and scalability of today’s complex data environment. Furthermore, Apache Pulsar’s distinctive architecture separates the message serving component from the message storage segment, creating a robust cloud-native data-streaming platform. This architecture is designed to be both scalable and elastic, allowing for quick adjustments to fluctuating event traffic and evolving business needs, and it can scale up to accommodate millions of topics, ensuring that computation and storage remain decoupled for optimal performance. Ultimately, this innovative design positions StreamNative as a leader in addressing the multifaceted requirements of modern data streaming. -
16
Stripe Data Pipeline
Stripe
3¢ per transactionThe Stripe Data Pipeline efficiently transfers your current Stripe data and reports to either Snowflake or Amazon Redshift with just a few clicks. By consolidating your Stripe data alongside other business information, you can expedite your accounting processes and achieve deeper insights into your operations. Setting up the Stripe Data Pipeline takes only a few minutes, after which your Stripe data and reports will be automatically sent to your data warehouse regularly—no coding skills are necessary. This creates a unified source of truth, enhancing the speed of your financial closing while providing improved analytical capabilities. You can easily pinpoint your top-performing payment methods and investigate fraud patterns based on location, among other analyses. The pipeline allows you to send your Stripe data straight to your data warehouse, eliminating the need for a third-party extract, transform, and load (ETL) process. Additionally, you can relieve yourself of the burden of ongoing maintenance with a pipeline that is inherently integrated with Stripe. Regardless of the volume of data, you can trust that it will remain complete and accurate. This automation of data delivery at scale helps in reducing security vulnerabilities and prevents potential data outages and delays, ensuring smooth operations. Ultimately, this solution empowers businesses to leverage their data more effectively and make informed decisions swiftly. -
17
Crux
Crux
Discover the reasons why leading companies are turning to the Crux external data automation platform to enhance their external data integration, transformation, and monitoring without the need for additional personnel. Our cloud-native technology streamlines the processes of ingesting, preparing, observing, and consistently delivering any external dataset. Consequently, this enables you to receive high-quality data precisely where and when you need it, formatted correctly. Utilize features such as automated schema detection, inferred delivery schedules, and lifecycle management to swiftly create pipelines from diverse external data sources. Moreover, boost data discoverability across your organization with a private catalog that links and matches various data products. Additionally, you can enrich, validate, and transform any dataset, allowing for seamless integration with other data sources, which ultimately speeds up your analytics processes. With these capabilities, your organization can fully leverage its data assets to drive informed decision-making and strategic growth. -
18
Lyftrondata
Lyftrondata
If you're looking to establish a governed delta lake, create a data warehouse, or transition from a conventional database to a contemporary cloud data solution, Lyftrondata has you covered. You can effortlessly create and oversee all your data workloads within a single platform, automating the construction of your pipeline and warehouse. Instantly analyze your data using ANSI SQL and business intelligence or machine learning tools, and easily share your findings without the need for custom coding. This functionality enhances the efficiency of your data teams and accelerates the realization of value. You can define, categorize, and locate all data sets in one centralized location, enabling seamless sharing with peers without the complexity of coding, thus fostering insightful data-driven decisions. This capability is particularly advantageous for organizations wishing to store their data once, share it with various experts, and leverage it repeatedly for both current and future needs. In addition, you can define datasets, execute SQL transformations, or migrate your existing SQL data processing workflows to any cloud data warehouse of your choice, ensuring flexibility and scalability in your data management strategy. -
19
Hazelcast
Hazelcast
In-Memory Computing Platform. Digital world is different. Microseconds are important. The world's most important organizations rely on us for powering their most sensitive applications at scale. If they meet the current requirement for immediate access, new data-enabled apps can transform your business. Hazelcast solutions can be used to complement any database and deliver results that are much faster than traditional systems of record. Hazelcast's distributed architecture ensures redundancy and continuous cluster up-time, as well as always available data to support the most demanding applications. The capacity grows with demand without compromising performance and availability. The cloud delivers the fastest in-memory data grid and third-generation high speed event processing. -
20
Apache Kafka
The Apache Software Foundation
1 RatingApache Kafka® is a robust, open-source platform designed for distributed streaming. It can scale production environments to accommodate up to a thousand brokers, handling trillions of messages daily and managing petabytes of data with hundreds of thousands of partitions. The system allows for elastic growth and reduction of both storage and processing capabilities. Furthermore, it enables efficient cluster expansion across availability zones or facilitates the interconnection of distinct clusters across various geographic locations. Users can process event streams through features such as joins, aggregations, filters, transformations, and more, all while utilizing event-time and exactly-once processing guarantees. Kafka's built-in Connect interface seamlessly integrates with a wide range of event sources and sinks, including Postgres, JMS, Elasticsearch, AWS S3, among others. Additionally, developers can read, write, and manipulate event streams using a diverse selection of programming languages, enhancing the platform's versatility and accessibility. This extensive support for various integrations and programming environments makes Kafka a powerful tool for modern data architectures. -
21
DoubleCloud
DoubleCloud
$0.024 per 1 GB per monthOptimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry. -
22
Conduktor
Conduktor
We developed Conduktor, a comprehensive and user-friendly interface designed to engage with the Apache Kafka ecosystem seamlessly. Manage and develop Apache Kafka with assurance using Conduktor DevTools, your all-in-one desktop client tailored for Apache Kafka, which helps streamline workflows for your entire team. Learning and utilizing Apache Kafka can be quite challenging, but as enthusiasts of Kafka, we have crafted Conduktor to deliver an exceptional user experience that resonates with developers. Beyond merely providing an interface, Conduktor empowers you and your teams to take command of your entire data pipeline through our integrations with various technologies associated with Apache Kafka. With Conduktor, you gain access to the most complete toolkit available for working with Apache Kafka, ensuring that your data management processes are efficient and effective. This means you can focus more on innovation while we handle the complexities of your data workflows. -
23
RudderStack
RudderStack
$750/month RudderStack is the smart customer information pipeline. You can easily build pipelines that connect your entire customer data stack. Then, make them smarter by pulling data from your data warehouse to trigger enrichment in customer tools for identity sewing and other advanced uses cases. Start building smarter customer data pipelines today. -
24
Pantomath
Pantomath
Organizations are increasingly focused on becoming more data-driven, implementing dashboards, analytics, and data pipelines throughout the contemporary data landscape. However, many organizations face significant challenges with data reliability, which can lead to misguided business decisions and a general mistrust in data that negatively affects their financial performance. Addressing intricate data challenges is often a labor-intensive process that requires collaboration among various teams, all of whom depend on informal knowledge to painstakingly reverse engineer complex data pipelines spanning multiple platforms in order to pinpoint root causes and assess their implications. Pantomath offers a solution as a data pipeline observability and traceability platform designed to streamline data operations. By continuously monitoring datasets and jobs within the enterprise data ecosystem, it provides essential context for complex data pipelines by generating automated cross-platform technical pipeline lineage. This automation not only enhances efficiency but also fosters greater confidence in data-driven decision-making across the organization. -
25
QuerySurge
RTTS
8 RatingsQuerySurge is the smart Data Testing solution that automates the data validation and ETL testing of Big Data, Data Warehouses, Business Intelligence Reports and Enterprise Applications with full DevOps functionality for continuous testing. Use Cases - Data Warehouse & ETL Testing - Big Data (Hadoop & NoSQL) Testing - DevOps for Data / Continuous Testing - Data Migration Testing - BI Report Testing - Enterprise Application/ERP Testing Features Supported Technologies - 200+ data stores are supported QuerySurge Projects - multi-project support Data Analytics Dashboard - provides insight into your data Query Wizard - no programming required Design Library - take total control of your custom test desig BI Tester - automated business report testing Scheduling - run now, periodically or at a set time Run Dashboard - analyze test runs in real-time Reports - 100s of reports API - full RESTful API DevOps for Data - integrates into your CI/CD pipeline Test Management Integration QuerySurge will help you: - Continuously detect data issues in the delivery pipeline - Dramatically increase data validation coverage - Leverage analytics to optimize your critical data - Improve your data quality at speed -
26
Datavolo
Datavolo
$36,000 per yearGather all your unstructured data to meet your LLM requirements effectively. Datavolo transforms single-use, point-to-point coding into rapid, adaptable, reusable pipelines, allowing you to concentrate on what truly matters—producing exceptional results. As a dataflow infrastructure, Datavolo provides you with a significant competitive advantage. Enjoy swift, unrestricted access to all your data, including the unstructured files essential for LLMs, thereby enhancing your generative AI capabilities. Experience pipelines that expand alongside you, set up in minutes instead of days, without the need for custom coding. You can easily configure sources and destinations at any time, while trust in your data is ensured, as lineage is incorporated into each pipeline. Move beyond single-use pipelines and costly configurations. Leverage your unstructured data to drive AI innovation with Datavolo, which is supported by Apache NiFi and specifically designed for handling unstructured data. With a lifetime of experience, our founders are dedicated to helping organizations maximize their data's potential. This commitment not only empowers businesses but also fosters a culture of data-driven decision-making. -
27
Lightbend
Lightbend
Lightbend offers innovative technology that empowers developers to create applications centered around data, facilitating the development of demanding, globally distributed systems and streaming data pipelines. Businesses across the globe rely on Lightbend to address the complexities associated with real-time, distributed data, which is essential for their most critical business endeavors. The Akka Platform provides essential components that simplify the process for organizations to construct, deploy, and manage large-scale applications that drive digital transformation. By leveraging reactive microservices, companies can significantly speed up their time-to-value while minimizing expenses related to infrastructure and cloud services, all while ensuring resilience against failures and maintaining efficiency at any scale. With built-in features for encryption, data shredding, TLS enforcement, and adherence to GDPR standards, it ensures secure data handling. Additionally, the framework supports rapid development, deployment, and oversight of streaming data pipelines, making it a comprehensive solution for modern data challenges. This versatility positions companies to fully harness the potential of their data, ultimately propelling them forward in an increasingly competitive landscape. -
28
StreamScape
StreamScape
Leverage Reactive Programming on the back-end without the hassle of using specialized languages or complex frameworks. With the help of Triggers, Actors, and Event Collections, it becomes straightforward to create data pipelines and manage data streams through an intuitive SQL-like syntax, effectively simplifying the challenges associated with distributed system development. A standout aspect is the Extensible Data Modeling feature, which enables rich semantics and schema definitions to accurately represent real-world entities. The implementation of on-the-fly validation and data shaping rules accommodates various formats, including XML and JSON, making it effortless to articulate and adapt your schema in line with evolving business needs. If you can articulate it, we have the capability to query it. If you're familiar with SQL and JavaScript, you're already equipped to navigate the data engine. No matter the format, a robust query language allows for immediate testing of logic expressions and functions, which accelerates development and streamlines deployment, resulting in exceptional data agility and responsiveness to changing circumstances. This adaptability not only enhances productivity but also fosters innovation within teams. -
29
Google Cloud Data Fusion
Google
Open core technology facilitates the integration of hybrid and multi-cloud environments. Built on the open-source initiative CDAP, Data Fusion guarantees portability of data pipelines for its users. The extensive compatibility of CDAP with both on-premises and public cloud services enables Cloud Data Fusion users to eliminate data silos and access previously unreachable insights. Additionally, its seamless integration with Google’s top-tier big data tools enhances the user experience. By leveraging Google Cloud, Data Fusion not only streamlines data security but also ensures that data is readily available for thorough analysis. Whether you are constructing a data lake utilizing Cloud Storage and Dataproc, transferring data into BigQuery for robust data warehousing, or transforming data for placement into a relational database like Cloud Spanner, the integration capabilities of Cloud Data Fusion promote swift and efficient development while allowing for rapid iteration. This comprehensive approach ultimately empowers businesses to derive greater value from their data assets. -
30
Azkaban
Azkaban
Azkaban serves as a distributed Workflow Manager developed by LinkedIn to address the complexities of Hadoop job dependencies. There were instances where jobs required a specific order of execution, ranging from ETL processes to data analysis applications. Following the release of version 3.0, Azkaban offers two distinct operational modes: the standalone “solo-server” mode and the distributed multiple-executor mode. The solo-server mode utilizes an embedded H2 database, allowing both the web server and executor server to operate within the same process, making it ideal for initial experimentation or small-scale applications. In contrast, the multiple-executor mode is designed for serious production environments, requiring a MySQL database configured with a master-slave arrangement. Ideally, the web server and executor servers are hosted on separate machines to ensure that system upgrades and maintenance do not disrupt user experience. This configuration not only enhances Azkaban’s robustness but also significantly improves its scalability, making it suitable for larger, more complex workflows. By offering these two modes, Azkaban caters to a wide range of user needs, from casual experimentation to enterprise-level deployments. -
31
Upsolver
Upsolver
Upsolver makes it easy to create a governed data lake, manage, integrate, and prepare streaming data for analysis. Only use auto-generated schema on-read SQL to create pipelines. A visual IDE that makes it easy to build pipelines. Add Upserts to data lake tables. Mix streaming and large-scale batch data. Automated schema evolution and reprocessing of previous state. Automated orchestration of pipelines (no Dags). Fully-managed execution at scale Strong consistency guarantee over object storage Nearly zero maintenance overhead for analytics-ready information. Integral hygiene for data lake tables, including columnar formats, partitioning and compaction, as well as vacuuming. Low cost, 100,000 events per second (billions every day) Continuous lock-free compaction to eliminate the "small file" problem. Parquet-based tables are ideal for quick queries. -
32
CData Sync
CData Software
CData Sync is a universal database pipeline that automates continuous replication between hundreds SaaS applications & cloud-based data sources. It also supports any major data warehouse or database, whether it's on-premise or cloud. Replicate data from hundreds cloud data sources to popular databases destinations such as SQL Server and Redshift, S3, Snowflake and BigQuery. It is simple to set up replication: log in, select the data tables you wish to replicate, then select a replication period. It's done. CData Sync extracts data iteratively. It has minimal impact on operational systems. CData Sync only queries and updates data that has been updated or added since the last update. CData Sync allows for maximum flexibility in partial and full replication scenarios. It ensures that critical data is safely stored in your database of choice. Get a 30-day trial of the Sync app for free or request more information at www.cdata.com/sync -
33
Dataform
Google
FreeDataform provides a platform for data analysts and engineers to create and manage scalable data transformation pipelines in BigQuery using solely SQL from a single, integrated interface. The open-source core language allows teams to outline table structures, manage dependencies, include column descriptions, and establish data quality checks within a collective code repository, all while adhering to best practices in software development, such as version control, various environments, testing protocols, and comprehensive documentation. A fully managed, serverless orchestration layer seamlessly oversees workflow dependencies, monitors data lineage, and executes SQL pipelines either on demand or on a schedule through tools like Cloud Composer, Workflows, BigQuery Studio, or external services. Within the browser-based development interface, users can receive immediate error notifications, visualize their dependency graphs, link their projects to GitHub or GitLab for version control and code reviews, and initiate high-quality production pipelines in just minutes without exiting BigQuery Studio. This efficiency not only accelerates the development process but also enhances collaboration among team members. -
34
DataKitchen
DataKitchen
You can regain control over your data pipelines and instantly deliver value without any errors. DataKitchen™, DataOps platforms automate and coordinate all people, tools and environments within your entire data analytics organization. This includes everything from orchestration, testing and monitoring, development, and deployment. You already have the tools you need. Our platform automates your multi-tool, multienvironment pipelines from data access to value delivery. Add automated tests to every node of your production and development pipelines to catch costly and embarrassing errors before they reach the end user. In minutes, you can create repeatable work environments that allow teams to make changes or experiment without interrupting production. With a click, you can instantly deploy new features to production. Your teams can be freed from the tedious, manual work that hinders innovation. -
35
Orchestra
Orchestra
Orchestra serves as a Comprehensive Control Platform for Data and AI Operations, aimed at empowering data teams to effortlessly create, deploy, and oversee workflows. This platform provides a declarative approach that merges coding with a graphical interface, enabling users to develop workflows at a tenfold speed while cutting maintenance efforts by half. Through its real-time metadata aggregation capabilities, Orchestra ensures complete data observability, facilitating proactive alerts and swift recovery from any pipeline issues. It smoothly integrates with a variety of tools such as dbt Core, dbt Cloud, Coalesce, Airbyte, Fivetran, Snowflake, BigQuery, Databricks, and others, ensuring it fits well within existing data infrastructures. With a modular design that accommodates AWS, Azure, and GCP, Orchestra proves to be a flexible option for businesses and growing organizations looking to optimize their data processes and foster confidence in their AI ventures. Additionally, its user-friendly interface and robust connectivity options make it an essential asset for organizations striving to harness the full potential of their data ecosystems. -
36
Informatica Data Engineering
Informatica
Efficiently ingest, prepare, and manage data pipelines at scale specifically designed for cloud-based AI and analytics. The extensive data engineering suite from Informatica equips users with all the essential tools required to handle large-scale data engineering tasks that drive AI and analytical insights, including advanced data integration, quality assurance, streaming capabilities, data masking, and preparation functionalities. With the help of CLAIRE®-driven automation, users can quickly develop intelligent data pipelines, which feature automatic change data capture (CDC), allowing for the ingestion of thousands of databases and millions of files alongside streaming events. This approach significantly enhances the speed of achieving return on investment by enabling self-service access to reliable, high-quality data. Gain genuine, real-world perspectives on Informatica's data engineering solutions from trusted peers within the industry. Additionally, explore reference architectures designed for sustainable data engineering practices. By leveraging AI-driven data engineering in the cloud, organizations can ensure their analysts and data scientists have access to the dependable, high-quality data essential for transforming their business operations effectively. Ultimately, this comprehensive approach not only streamlines data management but also empowers teams to make data-driven decisions with confidence. -
37
Arcion
Arcion Labs
$2,894.76 per monthImplement production-ready change data capture (CDC) systems for high-volume, real-time data replication effortlessly, without writing any code. Experience an enhanced Change Data Capture process with Arcion, which provides automatic schema conversion, comprehensive data replication, and various deployment options. Benefit from Arcion's zero data loss architecture that ensures reliable end-to-end data consistency alongside integrated checkpointing, all without requiring any custom coding. Overcome scalability and performance challenges with a robust, distributed architecture that enables data replication at speeds ten times faster. Minimize DevOps workload through Arcion Cloud, the only fully-managed CDC solution available, featuring autoscaling, high availability, and an intuitive monitoring console. Streamline and standardize your data pipeline architecture while facilitating seamless, zero-downtime migration of workloads from on-premises systems to the cloud. This innovative approach not only enhances efficiency but also significantly reduces the complexity of managing data replication processes. -
38
Openbridge
Openbridge
$149 per monthDiscover how to enhance sales growth effortlessly by utilizing automated data pipelines that connect seamlessly to data lakes or cloud storage solutions without the need for coding. This adaptable platform adheres to industry standards, enabling the integration of sales and marketing data to generate automated insights for more intelligent expansion. Eliminate the hassle and costs associated with cumbersome manual data downloads. You’ll always have a clear understanding of your expenses, only paying for the services you actually use. Empower your tools with rapid access to data that is ready for analytics. Our certified developers prioritize security by exclusively working with official APIs. You can quickly initiate data pipelines sourced from widely-used platforms. With pre-built, pre-transformed pipelines at your disposal, you can unlock crucial data from sources like Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and more. The processes for data ingestion and transformation require no coding, allowing teams to swiftly and affordably harness the full potential of their data. Your information is consistently safeguarded and securely stored in a reliable, customer-controlled data destination such as Databricks or Amazon Redshift, ensuring peace of mind as you manage your data assets. This streamlined approach not only saves time but also enhances overall operational efficiency. -
39
Chalk
Chalk
FreeExperience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem. -
40
Data Taps
Data Taps
Construct your data pipelines akin to assembling Lego blocks using Data Taps. Integrate fresh metrics layers, delve deeper, and conduct inquiries using real-time streaming SQL capabilities. Collaborate with peers, disseminate, and access data on a global scale. Enhance and modify your setup effortlessly. Employ various models and schemas while evolving your schema. Designed for scalability, it leverages the power of AWS Lambda and S3 for optimal performance. This flexibility allows teams to adapt quickly to changing data needs. -
41
Key Ward
Key Ward
€9,000 per yearEffortlessly manage, process, and transform CAD, FE, CFD, and test data with ease. Establish automatic data pipelines for machine learning, reduced order modeling, and 3D deep learning applications. Eliminate the complexity of data science without the need for coding. Key Ward's platform stands out as the pioneering end-to-end no-code engineering solution, fundamentally changing the way engineers work with their data, whether it be experimental or CAx. By harnessing the power of engineering data intelligence, our software empowers engineers to seamlessly navigate their multi-source data, extracting immediate value through integrated advanced analytics tools while also allowing for the custom development of machine learning and deep learning models, all within a single platform with just a few clicks. Centralize, update, extract, sort, clean, and prepare your diverse data sources for thorough analysis, machine learning, or deep learning applications automatically. Additionally, leverage our sophisticated analytics tools on your experimental and simulation data to uncover correlations, discover dependencies, and reveal underlying patterns that can drive innovation in engineering processes. Ultimately, this approach streamlines workflows, enhancing productivity and enabling more informed decision-making in engineering endeavors. -
42
K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.
-
43
VirtualMetric
VirtualMetric
FreeVirtualMetric is a comprehensive data monitoring solution that provides organizations with real-time insights into security, network, and server performance. Using its advanced DataStream pipeline, VirtualMetric efficiently collects and processes security logs, reducing the burden on SIEM systems by filtering irrelevant data and enabling faster threat detection. The platform supports a wide range of systems, offering automatic log discovery and transformation across environments. With features like zero data loss and compliance storage, VirtualMetric ensures that organizations can meet security and regulatory requirements while minimizing storage costs and enhancing overall IT operations. -
44
SynctacticAI
SynctacticAI Technology
Utilize state-of-the-art data science tools to revolutionize your business results. SynctacticAI transforms your company's journey by employing sophisticated data science tools, algorithms, and systems to derive valuable knowledge and insights from both structured and unstructured data sets. Uncover insights from your data, whether it's structured or unstructured, and whether you're handling it in batches or in real-time. The Sync Discover feature plays a crucial role in identifying relevant data points and methodically organizing large data collections. Scale your data processing capabilities with Sync Data, which offers an intuitive interface that allows for easy configuration of your data pipelines through simple drag-and-drop actions, enabling you to process data either manually or according to specified schedules. Harnessing the capabilities of machine learning makes the process of deriving insights from data seamless and straightforward. Just choose your target variable, select features, and pick from our array of pre-built models, and Sync Learn will automatically manage the rest for you, ensuring an efficient learning process. This streamlined approach not only saves time but also enhances overall productivity and decision-making within your organization. -
45
Pandio
Pandio
$1.40 per hourIt is difficult, costly, and risky to connect systems to scale AI projects. Pandio's cloud native managed solution simplifies data pipelines to harness AI's power. You can access your data from any location at any time to query, analyze, or drive to insight. Big data analytics without the high cost Enable data movement seamlessly. Streaming, queuing, and pub-sub with unparalleled throughput, latency and durability. In less than 30 minutes, you can design, train, deploy, and test machine learning models locally. Accelerate your journey to ML and democratize it across your organization. It doesn't take months or years of disappointment. Pandio's AI driven architecture automatically orchestrates all your models, data and ML tools. Pandio can be integrated with your existing stack to help you accelerate your ML efforts. Orchestrate your messages and models across your organization.