Best Xero.AI Alternatives in 2024
Find the top alternatives to Xero.AI currently available. Compare ratings, reviews, pricing, and features of Xero.AI alternatives in 2024. Slashdot lists the best Xero.AI alternatives on the market that offer competing products that are similar to Xero.AI. Sort through Xero.AI alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
620 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. -
2
Dialogflow
Google
216 RatingsDialogflow by Google Cloud is a natural-language understanding platform that allows you to create and integrate a conversational interface into your mobile, web, or device. It also makes it easy for you to integrate a bot, interactive voice response system, or other type of user interface into your app, web, or mobile application. Dialogflow allows you to create new ways for customers to interact with your product. Dialogflow can analyze input from customers in multiple formats, including text and audio (such as voice or phone calls). Dialogflow can also respond to customers via text or synthetic speech. Dialogflow CX, ES offer virtual agent services for chatbots or contact centers. Agent Assist can be used to assist human agents in contact centers that have them. Agent Assist offers real-time suggestions to human agents, even while they are talking with customers. -
3
TensorFlow
TensorFlow
Free 2 RatingsOpen source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test. -
4
Amazon SageMaker
Amazon
Amazon SageMaker, a fully managed service, provides data scientists and developers with the ability to quickly build, train, deploy, and deploy machine-learning (ML) models. SageMaker takes the hard work out of each step in the machine learning process, making it easier to create high-quality models. Traditional ML development can be complex, costly, and iterative. This is made worse by the lack of integrated tools to support the entire machine learning workflow. It is tedious and error-prone to combine tools and workflows. SageMaker solves the problem by combining all components needed for machine learning into a single toolset. This allows models to be produced faster and with less effort. Amazon SageMaker Studio is a web-based visual interface that allows you to perform all ML development tasks. SageMaker Studio allows you to have complete control over each step and gives you visibility. -
5
Daria
XBrain
Daria's advanced automated features enable users to quickly and easily create predictive models. This significantly reduces the time and effort required to build them. Eliminate technological and financial barriers to building AI systems from scratch for businesses. Automated machine learning for data professionals can streamline and speed up workflows, reducing the amount of iterative work required. An intuitive GUI for data science beginners gives you hands-on experience with machine learning. Daria offers various data transformation functions that allow you to quickly create multiple feature sets. Daria automatically searches through millions of combinations of algorithms, modeling techniques, and hyperparameters in order to find the best predictive model. Daria's RESTful API allows you to deploy predictive models directly into production. -
6
cnvrg.io
cnvrg.io
An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure. -
7
Google Cloud Vertex AI Workbench
Google
$10 per GBOne development environment for all data science workflows. Natively analyze your data without the need to switch between services. Data to training at scale Models can be built and trained 5X faster than traditional notebooks. Scale up model development using simple connectivity to Vertex AI Services. Access to data is simplified and machine learning is made easier with BigQuery Dataproc, Spark and Vertex AI integration. Vertex AI training allows you to experiment and prototype at scale. Vertex AI Workbench allows you to manage your training and deployment workflows for Vertex AI all from one location. Fully managed, scalable and enterprise-ready, Jupyter-based, fully managed, scalable, and managed compute infrastructure with security controls. Easy connections to Google Cloud's Big Data Solutions allow you to explore data and train ML models. -
8
PredictSense
Winjit
PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort. -
9
Teachable Machine
Teachable Machine
It's fast and easy to create machine learning models for websites, apps, and other applications. Teachable Machine is flexible. You can use files or capture live examples. It respects your work. You can even use it entirely on-device without having to leave any microphone or webcam data. Teachable Machine, a web-based tool, makes it easy to create machine learning models. Artists, educators, students, innovators, and makers of all types - anyone with an idea to explore. There is no need to have any prior machine learning knowledge. Without writing any machine learning code, you can train a computer how to recognize your images, sounds, poses, and sounds. You can then use your model in your own sites, apps, and other projects. -
10
IBM Watson Machine Learning
IBM
$0.575 per hourIBM Watson Machine Learning, a full-service IBM Cloud offering, makes it easy for data scientists and developers to work together to integrate predictive capabilities into their applications. The Machine Learning service provides a set REST APIs that can be called from any programming language. This allows you to create applications that make better decisions, solve difficult problems, and improve user outcomes. Machine learning models management (continuous-learning system) and deployment (online batch, streaming, or online) are available. You can choose from any of the widely supported machine-learning frameworks: TensorFlow and Keras, Caffe or PyTorch. Spark MLlib, scikit Learn, xgboost, SPSS, Spark MLlib, Keras, Caffe and Keras. To manage your artifacts, you can use the Python client and command-line interface. The Watson Machine Learning REST API allows you to extend your application with artificial intelligence. -
11
Alibaba Cloud Machine Learning Platform for AI
Alibaba Cloud
$1.872 per hourA platform that offers a variety of machine learning algorithms to meet data mining and analysis needs. Machine Learning Platform for AI offers end-to-end machine-learning services, including data processing and feature engineering, model prediction, model training, model evaluation, and model prediction. Machine learning platform for AI integrates all these services to make AI easier than ever. Machine Learning Platform for AI offers a visual web interface that allows you to create experiments by dragging components onto the canvas. Machine learning modeling is a step-by-step process that improves efficiency and reduces costs when creating experiments. Machine Learning Platform for AI offers more than 100 algorithm components. These include text analysis, finance, classification, clustering and time series. -
12
Zerve AI
Zerve AI
With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation. -
13
IBM Watson OpenScale provides visibility into the creation and use of AI-powered applications in an enterprise-scale environment. It also allows businesses to see how ROI is delivered. IBM Watson OpenScale provides visibility to companies about how AI is created, used, and how ROI is delivered at business level. You can create and deploy trusted AI using the IDE you prefer, and provide data insights to your business and support team about how AI affects business results. Capture payload data, deployment output, and alerts to monitor the health of business applications. You can also access an open data warehouse for custom reporting and access to operations dashboards. Based on business-determined fairness attributes, automatically detects when artificial Intelligence systems produce incorrect results at runtime. Smart recommendations of new data to improve model training can reduce bias.
-
14
ScoopML
ScoopML
It's easy to build advanced predictive models with no math or coding in just a few clicks. The Complete Experience We provide everything you need, from cleaning data to building models to forecasting, and everything in between. Trustworthy. Learn the "why" behind AI decisions to drive business with actionable insight. Data Analytics in minutes without having to write code. In one click, you can complete the entire process of building ML algorithms, explaining results and predicting future outcomes. Machine Learning in 3 Steps You can go from raw data to actionable insights without writing a single line code. Upload your data. Ask questions in plain English Find the best model for your data. Share your results. Increase customer productivity We assist companies to use no code Machine Learning to improve their Customer Experience. -
15
AlxBlock
AlxBlock
$50 per monthAIxBlock is an end-to-end blockchain-based platform for AI that harnesses unused computing resources of BTC miners, as well as all global consumer GPUs. Our platform's training method is a hybrid machine learning approach that allows simultaneous training on multiple nodes. We use the DeepSpeed-TED method, a three-dimensional hybrid parallel algorithm which integrates data, tensor and expert parallelism. This allows for the training of Mixture of Experts models (MoE) on base models that are 4 to 8x larger than the current state of the art. The platform will identify and add compatible computing resources from the computing marketplace to the existing cluster of training nodes, and distribute the ML model for unlimited computations. This process unfolds dynamically and automatically, culminating in decentralized supercomputers which facilitate AI success. -
16
RazorThink
RazorThink
RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills. -
17
Predibase
Predibase
Declarative machine-learning systems offer the best combination of flexibility and simplicity, allowing for the fastest way to implement state-of-the art models. The system works by asking users to specify the "what" and then the system will figure out the "how". Start with smart defaults and iterate down to the code level on parameters. With Ludwig at Uber, and Overton from Apple, our team pioneered declarative machine-learning systems in industry. You can choose from our pre-built data connectors to support your databases, data warehouses and lakehouses as well as object storage. You can train state-of the-art deep learning models without having to manage infrastructure. Automated Machine Learning achieves the right balance between flexibility and control in a declarative manner. You can train and deploy models quickly using a declarative approach. -
18
Azure Machine Learning
Microsoft
Accelerate the entire machine learning lifecycle. Developers and data scientists can have more productive experiences building, training, and deploying machine-learning models faster by empowering them. Accelerate time-to-market and foster collaboration with industry-leading MLOps -DevOps machine learning. Innovate on a trusted platform that is secure and trustworthy, which is designed for responsible ML. Productivity for all levels, code-first and drag and drop designer, and automated machine-learning. Robust MLOps capabilities integrate with existing DevOps processes to help manage the entire ML lifecycle. Responsible ML capabilities – understand models with interpretability, fairness, and protect data with differential privacy, confidential computing, as well as control the ML cycle with datasheets and audit trials. Open-source languages and frameworks supported by the best in class, including MLflow and Kubeflow, ONNX and PyTorch. TensorFlow and Python are also supported. -
19
Hive AutoML
Hive
Build and deploy deep-learning models for custom use scenarios. Our automated machine-learning process allows customers create powerful AI solutions based on our best-in class models and tailored to their specific challenges. Digital platforms can quickly create custom models that fit their guidelines and requirements. Build large language models to support specialized use cases, such as bots for customer and technical service. Create image classification models for better understanding image libraries, including search, organization and more. -
20
Hugging Face
Hugging Face
$9 per monthAutoTrain is a new way to automatically evaluate, deploy and train state-of-the art Machine Learning models. AutoTrain, seamlessly integrated into the Hugging Face ecosystem, is an automated way to develop and deploy state of-the-art Machine Learning model. Your account is protected from all data, including your training data. All data transfers are encrypted. Today's options include text classification, text scoring and entity recognition. Files in CSV, TSV, or JSON can be hosted anywhere. After training is completed, we delete all training data. Hugging Face also has an AI-generated content detection tool. -
21
Delineate
Delineate
$99 per monthDelineate is an easy-to use platform that generates machine learning-driven predictive models for various purposes. You can enrich your CRM data with churn forecasts, sales forecasts, or even data products for customers and employees, just to name a few. Delineate allows you to quickly access data-driven insights that will help you make better decisions. The platform is for founders, revenue managers, product managers, executives, data enthusiasts, and others who are interested in data. Use Delineate to unlock the full potential of your data. -
22
You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
-
23
Deeploy
Deeploy
Deeploy allows you to maintain control over your ML models. You can easily deploy your models to our responsible AI platform without compromising transparency, control and compliance. Transparency, explainability and security of AI models are more important today than ever. You can monitor the performance of your models with confidence and accountability if you use a safe, secure environment. Over the years, our experience has shown us the importance of human interaction with machine learning. Only when machine-learning systems are transparent and accountable can experts and consumers provide feedback, overrule their decisions when necessary, and grow their trust. We created Deeploy for this reason. -
24
IBM watsonx
IBM
Watsonx is a new enterprise-ready AI platform that will multiply the impact of AI in your business. The platform consists of three powerful components, including the watsonx.ai Studio for new foundation models, machine learning, and generative AI; the watsonx.data Fit-for-Purpose Store for the flexibility and performance of a warehouse; and the watsonx.governance Toolkit to enable AI workflows built with responsibility, transparency, and explainability. The foundation models allow AI to be fine-tuned to the unique data and domain expertise of an enterprise with a specificity previously impossible. Use all your data, no matter where it is located. Take advantage of a hybrid cloud infrastructure that provides the foundation data for extending AI into your business. Improve data access, implement governance, reduce costs, and put quality models into production quicker. -
25
Gradio
Gradio
Create & Share Delightful Apps for Machine Learning. Gradio allows you to quickly and easily demo your machine-learning model. It has a friendly interface that anyone can use, anywhere. Installing Gradio is easy with pip. It only takes a few lines of code to create a Gradio Interface. You can choose between a variety interface types to interface with your function. Gradio is available as a webpage or embedded into Python notebooks. Gradio can generate a link that you can share publicly with colleagues to allow them to interact with your model remotely using their own devices. Once you have created an interface, it can be permanently hosted on Hugging Face. Hugging Face Spaces hosts the interface on their servers and provides you with a shareable link. -
26
Nyckel
Nyckel
FreeNyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complicated AI tools is hard. And confusing. Especially if you don't know machine learning. That’s why Nyckel built a platform that makes image and text classification easy. In just a few minutes, you can train an AI model to identify attributes of any image or text. Our goal is to help anyone spin up an image or text classification model in just minutes, regardless of technical knowledge. -
27
LatticeFlow
LatticeFlow
Your ML teams can auto-diagnose and improve their data and models to create robust and performant AI models. Only platform that can automatically diagnose data and models, empowering ML team to deliver robust and performant AI model faster. Camera noise, shadows, sign stickers, and other factors are covered. Confirmed using real-world images of models that consistently fail. While improving model accuracy by 0.2%. Our mission is to transform the way that the next generation AI systems are built. We need to create AI systems that are trusted by both users and companies if we want to use AI in our homes, offices, hospitals, roads, and businesses. We are leading AI researchers and professors at ETH Zurich. Our expertise includes formal methods, symbolic reasoning and machine learning. LatticeFlow was founded with the goal to create the first platform that allows companies to develop robust AI models that can be used in the wild. -
28
Obviously AI
Obviously AI
$75 per monthAll the steps involved in building machine learning algorithms and predicting results, all in one click. Data Dialog allows you to easily shape your data without having to wrangle your files. Your prediction reports can be shared with your team members or made public. Let anyone make predictions on your model. Our low-code API allows you to integrate dynamic ML predictions directly into your app. Real-time prediction of willingness to pay, score leads, and many other things. AI gives you access to the most advanced algorithms in the world, without compromising on performance. Forecast revenue, optimize supply chain, personalize your marketing. Now you can see what the next steps are. In minutes, you can add a CSV file or integrate with your favorite data sources. Select your prediction column from the dropdown and we'll automatically build the AI. Visualize the top drivers, predicted results, and simulate "what-if?" scenarios. -
29
Dataiku DSS
Dataiku
1 RatingData analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs. -
30
Key Ward
Key Ward
€9,000 per yearEasily extract, transform, manage & process CAD data, FE data, CFD and test results. Create automatic data pipelines to support machine learning, deep learning, and ROM. Data science barriers can be removed without coding. Key Ward's platform, the first engineering no-code end-to-end solution, redefines how engineers work with their data. Our software allows engineers to handle multi-source data with ease, extract direct value using our built-in advanced analytical tools, and build custom machine and deep learning model with just a few clicks. Automatically centralize, update and extract your multi-source data, then sort, clean and prepare it for analysis, machine and/or deep learning. Use our advanced analytics tools to correlate, identify patterns, and find dependencies in your experimental & simulator data. -
31
navio
Craftworks
Easy management, deployment and monitoring of machine learning models for supercharging MLOps. Available for all organizations on the best AI platform. You can use navio for various machine learning operations across your entire artificial intelligence landscape. Machine learning can be integrated into your business workflow to make a tangible, measurable impact on your business. navio offers various Machine Learning Operations (MLOps), which can be used to support you from the initial model development phase to the production run of your model. Automatically create REST endspoints and keep track the clients or machines that interact with your model. To get the best results, you should focus on exploring and training your models. You can also stop wasting time and resources setting up infrastructure. Let navio manage all aspects of product ionization so you can go live quickly with your machine-learning models. -
32
Autogon
Autogon
Autogon is an AI and machine-learning company that simplifies complex technologies to empower businesses and provide them with cutting-edge, accessible solutions for data-driven decision-making and global competitiveness. Discover the potential of Autogon's models to empower industries and harness the power of AI. They can foster innovation and drive growth in diverse sectors. Autogon Qore is your all-in one solution for image classification and text generation, visual Q&As, sentiment analysis, voice-cloning and more. Innovative AI capabilities will empower your business. You can make informed decisions, streamline your operations and drive growth with minimal technical expertise. Empower engineers, analysts and scientists to harness artificial intelligence and machine-learning for their projects and researchers. Create custom software with clear APIs and integrations SDKs. -
33
Cinchapi
Cinchapi
Machine learning powers the comprehensive data discovery, analysis, and automation platform. Cinchapi can understand all types of natural language, down to company-specific terminology. To dig deeper, ask follow-up questions. Cinchapi continually learns from user feedback. Cinchapi learns from your user feedback and anticipates your data needs. Cinchapi does all of the math and highlights the most important insights. This allows you to focus on the signal rather than being distracted by the noise. Cinchapi uses machine learning and advanced algorithms to enrich your data with context. Cinchapi's version control database allows you to pause and rewind real time data and explore every dimension in depth. -
34
Metatext
Metatext
$35 per monthCreate, evaluate, deploy, refine, and improve custom natural language processing models. Your team can automate workflows without the need for an AI expert team or expensive infrastructure. Metatext makes it easy to create customized AI/NLP models without any prior knowledge of ML, data science or MLOps. Automate complex workflows in just a few steps and rely on intuitive APIs and UIs to handle the heavy lifting. Our APIs will handle all the heavy lifting. Your custom AI will be trained and deployed automatically. A set of deep learning algorithms will help you get the most out of your custom AI. You can test it in a Playground. Integrate our APIs into your existing systems, Google Spreadsheets, or other tools. Choose the AI engine that suits your needs. Each AI engine offers a variety of tools that can be used to create datasets and fine tune models. Upload text data in different file formats and use our AI-assisted data labeling tool to annotate labels. -
35
Amazon Augmented AI (A2I)
Amazon
Amazon Augmented AI (Amazon A2I), makes it easy to create the workflows needed for human review of ML prediction. Amazon A2I provides human review for all developers. This removes the undifferentiated work involved in building systems that require human review or managing large numbers. Machine learning applications often require humans to review low confidence predictions in order to verify that the results are accurate. In some cases, such as extracting information from scanned mortgage applications forms, human review may be required due to poor scan quality or handwriting. However, building human review systems can be costly and time-consuming because it involves complex processes or "workflows", creating custom software to manage review tasks, results, and managing large numbers of reviewers. -
36
ClearML
ClearML
$15ClearML is an open-source MLOps platform that enables data scientists, ML engineers, and DevOps to easily create, orchestrate and automate ML processes at scale. Our frictionless and unified end-to-end MLOps Suite allows users and customers to concentrate on developing ML code and automating their workflows. ClearML is used to develop a highly reproducible process for end-to-end AI models lifecycles by more than 1,300 enterprises, from product feature discovery to model deployment and production monitoring. You can use all of our modules to create a complete ecosystem, or you can plug in your existing tools and start using them. ClearML is trusted worldwide by more than 150,000 Data Scientists, Data Engineers and ML Engineers at Fortune 500 companies, enterprises and innovative start-ups. -
37
Graviti
Graviti
Unstructured data is the future for AI. This future is now possible. Build an ML/AI pipeline to scale all your unstructured data from one place. Graviti allows you to use better data to create better models. Learn about Graviti, the data platform that allows AI developers to manage, query and version control unstructured data. Quality data is no longer an expensive dream. All your metadata, annotations, and predictions can be managed in one place. You can customize filters and see the results of filtering to find the data that meets your needs. Use a Git-like system to manage data versions and collaborate. Role-based access control allows for safe and flexible team collaboration. Graviti's built in marketplace and workflow creator makes it easy to automate your data pipeline. No more grinding, you can quickly scale up to rapid model iterations. -
38
Tencent Cloud TI Platform
Tencent
Tencent Cloud TI Platform, a machine learning platform for AI engineers, is a one stop shop. It supports AI development at every stage, from data preprocessing, to model building, to model training, to model evaluation, as well as model service. It is preconfigured with diverse algorithms components and supports multiple algorithm frameworks for adapting to different AI use-cases. Tencent Cloud TI Platform offers a machine learning experience in a single-stop shop. It covers a closed-loop workflow, from data preprocessing, to model building, training and evaluation. Tencent Cloud TI Platform allows even AI beginners to have their models automatically constructed, making the entire training process much easier. Tencent Cloud TI Platform’s auto-tuning feature can also improve the efficiency of parameter optimization. Tencent Cloud TI Platform enables CPU/GPU resources that can elastically respond with flexible billing methods to different computing power requirements. -
39
CognitiveScale Cortex AI
CognitiveScale
To develop AI solutions, engineers must have a resilient, open, repeatable engineering approach to ensure quality and agility. These efforts have not been able to address the challenges of today's complex environment, which is filled with a variety of tools and rapidly changing data. Platform for collaborative development that automates the control and development of AI applications across multiple persons. To predict customer behavior in real-time, and at scale, we can derive hyper-detailed customer profiles using enterprise data. AI-powered models that can continuously learn and achieve clearly defined business results. Allows organizations to demonstrate compliance with applicable rules and regulations. CognitiveScale's Cortex AI Platform is designed to address enterprise AI use cases using modular platform offerings. Customers use and leverage its capabilities in microservices as part of their enterprise AI initiatives. -
40
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question. -
41
MosaicML
MosaicML
With a single command, you can train and serve large AI models in scale. You can simply point to your S3 bucket. We take care of the rest: orchestration, efficiency and node failures. Simple and scalable. MosaicML allows you to train and deploy large AI model on your data in a secure environment. Keep up with the latest techniques, recipes, and foundation models. Our research team has developed and rigorously tested these recipes. In just a few easy steps, you can deploy your private cloud. Your data and models will never leave the firewalls. You can start in one cloud and continue in another without missing a beat. Own the model trained on your data. Model decisions can be better explained by examining them. Filter content and data according to your business needs. Integrate seamlessly with your existing data pipelines and experiment trackers. We are cloud-agnostic and enterprise-proven. -
42
Evidently AI
Evidently AI
$500 per monthThe open-source ML observability Platform. From validation to production, evaluate, test, and track ML models. From tabular data up to NLP and LLM. Built for data scientists and ML Engineers. All you need to run ML systems reliably in production. Start with simple ad-hoc checks. Scale up to the full monitoring platform. All in one tool with consistent APIs and metrics. Useful, beautiful and shareable. Explore and debug a comprehensive view on data and ML models. Start in a matter of seconds. Test before shipping, validate in production, and run checks with every model update. By generating test conditions based on a reference dataset, you can skip the manual setup. Monitor all aspects of your data, models and test results. Proactively identify and resolve production model problems, ensure optimal performance and continually improve it. -
43
Paperspace
Paperspace
$5 per monthCORE is a high performance computing platform that can be used for a variety of applications. CORE is easy to use with its point-and-click interface. You can run the most complex applications. CORE provides unlimited computing power on-demand. Cloud computing is available without the high-cost. CORE for teams offers powerful tools that allow you to sort, filter, create, connect, and create users, machines, networks, and machines. With an intuitive and simple GUI, it's easier than ever to see all of your infrastructure from one place. It is easy to add Active Directory integration or VPN through our simple but powerful management console. It's now possible to do things that used to take days, or even weeks. Even complex network configurations can be managed with just a few clicks. -
44
Zinia
Zinia
Zinia's artificial intelligence platform connects key business decision makers and AI. Now you can build trusted AI models without relying on technical teams. This allows you to align AI with business objectives. This breakthrough technology is simplified to make it easier to build AI backwards for your business. Reduces time to implement AI from months to days, increasing revenue by 15-20%. Zinia optimizes business results with human-centered AI. Most AI development in organizations is not aligned with business KPIs. Zinia was created with the goal of democratizing AI for you. Zinia puts cutting-edge ML technology and AI Technology in your hands. Zinia was built by a team of AI experts with over 50 years experience. It is your trusted platform that simplifies complex technology and provides the fastest route from data to business decisions. -
45
FutureAnalytica
FutureAnalytica
Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform. -
46
Metal
Metal
$25 per monthMetal is a fully-managed, production-ready ML retrieval platform. Metal embeddings can help you find meaning in unstructured data. Metal is a managed services that allows you build AI products without having to worry about managing infrastructure. Integrations with OpenAI and CLIP. Easy processing & chunking of your documents. Profit from our system in production. MetalRetriever is easily pluggable. Simple /search endpoint to run ANN queries. Get started for free. Metal API Keys are required to use our API and SDKs. Authenticate by populating headers with your API Key. Learn how to integrate Metal into your application using our Typescript SDK. You can use this library in JavaScript as well, even though we love TypeScript. Fine-tune spp programmatically. Indexed vector data of your embeddings. Resources that are specific to your ML use case. -
47
Datatron
Datatron
Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions. -
48
Lentiq
Lentiq
Lentiq is a data lake that allows small teams to do big tasks. You can quickly run machine learning, data science, and data analysis at scale in any cloud. Lentiq allows your teams to ingest data instantly and then clean, process, and share it. Lentiq allows you to create, train, and share models within your organization. Lentiq allows data teams to collaborate and invent with no restrictions. Data lakes are storage and process environments that provide ML, ETL and schema-on-read querying capabilities. Are you working on data science magic? A data lake is a must. The big, centralized data lake of the Post-Hadoop era is gone. Lentiq uses data pools, which are interconnected, multi-cloud mini-data lakes. They all work together to provide a stable, secure, and fast data science environment. -
49
SAS technologies combine to provide powerful tools for visual information. You can access, manipulate, analyze, and present information in visual formats. SAS Visual Machine Learning allows you to expand your analytics by using machine learning and deep learning capabilities. This makes it easier to visualize and report better. Visualize and discover relationships in your data. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes to make data-driven, smarter decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions. A comprehensive visual interface allows you to solve complex analytical problems. It handles all aspects of the analytics lifecycle.
-
50
PostgresML
PostgresML
$.60 per hourPostgresML is an entire platform that comes as a PostgreSQL Extension. Build simpler, faster and more scalable model right inside your database. Explore the SDK, and test open-source models in our hosted databases. Automate the entire workflow, from embedding creation to indexing and Querying for the easiest (and fastest) knowledge based chatbot implementation. Use multiple types of machine learning and natural language processing models, such as vector search or personalization with embeddings, to improve search results. Time series forecasting can help you gain key business insights. SQL and dozens regression algorithms allow you to build statistical and predictive models. ML at database layer can detect fraud and return results faster. PostgresML abstracts data management overheads from the ML/AI cycle by allowing users to run ML/LLM on a Postgres Database.