Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
RunPod
RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
Learn more
IBM Watson Machine Learning Accelerator
Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.
Learn more
Bright Data
Bright Data holds the title of the leading platform for web data, proxies, and data scraping solutions globally. Various entities, including Fortune 500 companies, educational institutions, and small enterprises, depend on Bright Data's offerings to gather essential public web data efficiently, reliably, and flexibly, enabling them to conduct research, monitor trends, analyze information, and make well-informed decisions.
With a customer base exceeding 20,000 and spanning nearly all sectors, Bright Data's services cater to a diverse range of needs. Its offerings include user-friendly, no-code data solutions for business owners, as well as a sophisticated proxy and scraping framework tailored for developers and IT specialists.
What sets Bright Data apart is its ability to deliver a cost-effective method for rapid and stable public web data collection at scale, seamlessly converting unstructured data into structured formats, and providing an exceptional customer experience—all while ensuring full transparency and compliance with regulations. This commitment to excellence has made Bright Data an essential tool for organizations seeking to leverage web data for strategic advantages.
Learn more