Epsilon3
Epsilon3 is the leading AI-powered procedure and resource management tool designed for teams building, testing, and operating advanced products and systems.
✔ Save Time & Money
Avoid costly delays, mistakes, and inefficiencies by automatically tracking procedures and resources.
✔ Prevent Failures
Ensure the right step is completed at the right time with conditional logic and built-in revision control.
✔ Optimize Collaboration
Real-time progress updates and role-based sign-offs keep your stakeholders on the same page.
✔ Continuously Improve
Advanced data analytics and automated reporting enable rapid iteration and data-driven decisions.
Epsilon3 is trusted by industry leaders like NASA, Blue Origin, Firefly Aerospace, Sierra Space, Redwire, Shift4, AeroVironment, Commonwealth Fusion Systems, and other commercial and government organizations.
Learn more
Azore CFD
Azore is software for computational fluid dynamics. It analyzes fluid flow and heat transfers. CFD allows engineers and scientists to analyze a wide range of fluid mechanics problems, thermal and chemical problems numerically using a computer. Azore can simulate a wide range of fluid dynamics situations, including air, liquids, gases, and particulate-laden flow. Azore is commonly used to model the flow of liquids through a piping or evaluate water velocity profiles around submerged items. Azore can also analyze the flow of gases or air, such as simulating ambient air velocity profiles as they pass around buildings, or investigating the flow, heat transfer, and mechanical equipment inside a room. Azore CFD is able to simulate virtually any incompressible fluid flow model. This includes problems involving conjugate heat transfer, species transport, and steady-state or transient fluid flows.
Learn more
LightTools
LightTools is an all-encompassing 3D software designed for optical engineering and design that facilitates virtual prototyping, simulation, optimization, and the creation of photorealistic renderings in illumination applications. By allowing users to swiftly develop illumination designs that function effectively on the first attempt, it minimizes the number of prototype iterations needed and speeds up the time it takes to bring products to market. Among its notable features are advanced solid modeling capabilities with complete optical precision, exceptional ray tracing performance that allows users to control accuracy and resolution, as well as the option to generate light sources from any geometric configuration, providing unparalleled flexibility. The software also includes specialized tools tailored for specific applications, enabling users to efficiently construct comprehensive models, along with an extensive library of sources and materials that encompasses LEDs and BSDF measurements. Furthermore, it boasts strong data exchange capabilities for mechanical CAD information and maintains an interactive, dynamic connection with SOLIDWORKS, enhancing user experience. Additionally, LightTools offers a variety of licensing options for its multiple modules, ensuring that users can select configurations that best suit their unique requirements.
Learn more
Ansys Lumerical Multiphysics
Ansys Lumerical Multiphysics serves as advanced software for simulating photonic components, allowing for the integrated design of these elements by effectively capturing the interplay of various multiphysics phenomena such as optical, thermal, electrical, and quantum well interactions, all within a cohesive design platform. Designed specifically for engineering workflows, this user-friendly product design software enhances the user experience, enabling quick design iterations and delivering in-depth insights into actual product performance. By merging real-time physics with precise high-fidelity simulations in an accessible interface, it promotes a shorter time-to-market for innovative designs. Among its key offerings are a finite element design environment, integrated multiphysics workflows, extensive material models, and robust automation and optimization capabilities. The suite of solvers and streamlined processes in Lumerical Multiphysics effectively reflects the complex interactions of physical effects, facilitating accurate modeling of both passive and active photonic components. This comprehensive approach not only enhances design efficiency but also leads to improved product reliability and performance evaluations.
Learn more