Best Vertex AI Alternatives in 2025
Find the top alternatives to Vertex AI currently available. Compare ratings, reviews, pricing, and features of Vertex AI alternatives in 2025. Slashdot lists the best Vertex AI alternatives on the market that offer competing products that are similar to Vertex AI. Sort through Vertex AI alternatives below to make the best choice for your needs
-
1
Google AI Studio
Google
4 RatingsGoogle AI Studio is a user-friendly, web-based workspace that offers a streamlined environment for exploring and applying cutting-edge AI technology. It acts as a powerful launchpad for diving into the latest developments in AI, making complex processes more accessible to developers of all levels. The platform provides seamless access to Google's advanced Gemini AI models, creating an ideal space for collaboration and experimentation in building next-gen applications. With tools designed for efficient prompt crafting and model interaction, developers can quickly iterate and incorporate complex AI capabilities into their projects. The flexibility of the platform allows developers to explore a wide range of use cases and AI solutions without being constrained by technical limitations. Google AI Studio goes beyond basic testing by enabling a deeper understanding of model behavior, allowing users to fine-tune and enhance AI performance. This comprehensive platform unlocks the full potential of AI, facilitating innovation and improving efficiency in various fields by lowering the barriers to AI development. By removing complexities, it helps users focus on building impactful solutions faster. -
2
RunPod
RunPod
116 RatingsRunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference. -
3
Google Cloud Vision AI
Google
Harness the power of AutoML Vision or leverage pre-trained Vision API models to extract meaningful insights from images stored in the cloud or at the network's edge, allowing for emotion detection, text interpretation, and much more. Google Cloud presents two advanced computer vision solutions that utilize machine learning to provide top-notch prediction accuracy for image analysis. You can streamline the creation of bespoke machine learning models by simply uploading your images, using AutoML Vision's intuitive graphical interface to train these models, and fine-tuning them for optimal performance in terms of accuracy, latency, and size. Once perfected, these models can be seamlessly exported for use in cloud applications or on various edge devices. Additionally, Google Cloud’s Vision API grants access to robust pre-trained machine learning models via REST and RPC APIs. You can easily assign labels to images, categorize them into millions of pre-existing classifications, identify objects and faces, interpret both printed and handwritten text, and enhance your image catalog with rich metadata for deeper insights. This combination of tools not only simplifies the image analysis process but also empowers businesses to make data-driven decisions more effectively. -
4
Ango Hub is an all-in-one, quality-oriented data annotation platform that AI teams can use. Ango Hub is available on-premise and in the cloud. It allows AI teams and their data annotation workforces to quickly and efficiently annotate their data without compromising quality. Ango Hub is the only data annotation platform that focuses on quality. It features features that enhance the quality of your annotations. These include a centralized labeling system, a real time issue system, review workflows and sample label libraries. There is also consensus up to 30 on the same asset. Ango Hub is versatile as well. It supports all data types that your team might require, including image, audio, text and native PDF. There are nearly twenty different labeling tools that you can use to annotate data. Some of these tools are unique to Ango hub, such as rotated bounding box, unlimited conditional questions, label relations and table-based labels for more complicated labeling tasks.
-
5
Amazon SageMaker
Amazon
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment. -
6
Dataloop AI
Dataloop AI
Manage unstructured data to develop AI solutions in record time. Enterprise-grade data platform with vision AI. Dataloop offers a single-stop-shop for building and deploying powerful data pipelines for computer vision, data labeling, automation of data operations, customizing production pipelines, and weaving in the human for data validation. Our vision is to make machine-learning-based systems affordable, scalable and accessible for everyone. Explore and analyze large quantities of unstructured information from diverse sources. Use automated preprocessing to find similar data and identify the data you require. Curate, version, cleanse, and route data to where it's required to create exceptional AI apps. -
7
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
8
Labelbox
Labelbox
The training data platform for AI teams. A machine learning model can only be as good as the training data it uses. Labelbox is an integrated platform that allows you to create and manage high quality training data in one place. It also supports your production pipeline with powerful APIs. A powerful image labeling tool for segmentation, object detection, and image classification. You need precise and intuitive image segmentation tools when every pixel is important. You can customize the tools to suit your particular use case, including custom attributes and more. The performant video labeling editor is for cutting-edge computer visual. Label directly on the video at 30 FPS, with frame level. Labelbox also provides per-frame analytics that allow you to create faster models. It's never been easier to create training data for natural language intelligence. You can quickly and easily label text strings, conversations, paragraphs, or documents with fast and customizable classification. -
9
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
10
Amazon Bedrock
Amazon
Amazon Bedrock is a comprehensive service that streamlines the development and expansion of generative AI applications by offering access to a diverse range of high-performance foundation models (FMs) from top AI organizations, including AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon. Utilizing a unified API, developers have the opportunity to explore these models, personalize them through methods such as fine-tuning and Retrieval Augmented Generation (RAG), and build agents that can engage with various enterprise systems and data sources. As a serverless solution, Amazon Bedrock removes the complexities associated with infrastructure management, enabling the effortless incorporation of generative AI functionalities into applications while prioritizing security, privacy, and ethical AI practices. This service empowers developers to innovate rapidly, ultimately enhancing the capabilities of their applications and fostering a more dynamic tech ecosystem. -
11
IBM watsonx.ai
IBM
Introducing an advanced enterprise studio designed for AI developers to effectively train, validate, fine-tune, and deploy AI models. The IBM® watsonx.ai™ AI studio is an integral component of the IBM watsonx™ AI and data platform, which unifies innovative generative AI capabilities driven by foundation models alongside traditional machine learning techniques, creating a robust environment that covers the entire AI lifecycle. Users can adjust and direct models using their own enterprise data to fulfill specific requirements, benefiting from intuitive tools designed for constructing and optimizing effective prompts. With watsonx.ai, you can develop AI applications significantly faster and with less data than ever before. Key features of watsonx.ai include: comprehensive AI governance that empowers enterprises to enhance and amplify the use of AI with reliable data across various sectors, and versatile, multi-cloud deployment options that allow seamless integration and execution of AI workloads within your preferred hybrid-cloud architecture. This makes it easier than ever for businesses to harness the full potential of AI technology. -
12
Tencent Cloud TI Platform
Tencent
The Tencent Cloud TI Platform serves as a comprehensive machine learning service tailored for AI engineers, facilitating the AI development journey from data preprocessing all the way to model building, training, and evaluation, as well as deployment. This platform is preloaded with a variety of algorithm components and supports a range of algorithm frameworks, ensuring it meets the needs of diverse AI applications. By providing a seamless machine learning experience that encompasses the entire workflow, the Tencent Cloud TI Platform enables users to streamline the process from initial data handling to the final assessment of models. Additionally, it empowers even those new to AI to automatically construct their models, significantly simplifying the training procedure. The platform's auto-tuning feature further boosts the efficiency of parameter optimization, enabling improved model performance. Moreover, Tencent Cloud TI Platform offers flexible CPU and GPU resources that can adapt to varying computational demands, alongside accommodating different billing options, making it a versatile choice for users with diverse needs. This adaptability ensures that users can optimize costs while efficiently managing their machine learning workflows. -
13
Label Studio
Label Studio
Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects. -
14
Nyckel
Nyckel
FreeNyckel makes it easy to auto-label images and text using AI. We say ‘easy’ because trying to do classification through complicated AI tools is hard. And confusing. Especially if you don't know machine learning. That’s why Nyckel built a platform that makes image and text classification easy. In just a few minutes, you can train an AI model to identify attributes of any image or text. Our goal is to help anyone spin up an image or text classification model in just minutes, regardless of technical knowledge. -
15
Azure Machine Learning
Microsoft
Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with diverse, efficient tools for swiftly constructing, training, and deploying machine learning models. Speed up market readiness and enhance team collaboration through top-notch MLOps—akin to DevOps but tailored for machine learning. Foster innovation on a secure and trusted platform that prioritizes responsible machine learning practices. Cater to all skill levels by offering both code-first approaches and user-friendly drag-and-drop designers, alongside automated machine learning options. Leverage comprehensive MLOps functionalities that seamlessly integrate into current DevOps workflows and oversee the entire ML lifecycle effectively. Emphasize responsible ML practices, ensuring model interpretability and fairness, safeguarding data through differential privacy and confidential computing, while maintaining oversight of the ML lifecycle with audit trails and datasheets. Furthermore, provide exceptional support for a variety of open-source frameworks and programming languages, including but not limited to MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, making it easier for teams to adopt best practices in their machine learning projects. With these capabilities, organizations can enhance their operational efficiency and drive innovation more effectively. -
16
Labellerr
Labellerr
Labellerr is a data annotation platform aimed at streamlining the creation of top-notch labeled datasets essential for AI and machine learning applications. It accommodates a wide array of data formats, such as images, videos, text, PDFs, and audio, addressing various annotation requirements. This platform enhances the labeling workflow with automated features, including model-assisted labeling and active learning, which help speed up the process significantly. Furthermore, Labellerr includes sophisticated analytics and intelligent quality assurance tools to maintain the precision and dependability of annotations. For projects that demand specialized expertise, Labellerr also provides expert-in-the-loop services, granting access to professionals in specialized domains like healthcare and automotive, thereby ensuring high-quality results. This comprehensive approach not only facilitates efficient data preparation but also builds trust in the reliability of the labeled datasets produced. -
17
Amazon SageMaker Ground Truth
Amazon Web Services
$0.08 per monthAmazon SageMaker enables the identification of various types of unprocessed data, including images, text documents, and videos, while also allowing for the addition of meaningful labels and the generation of synthetic data to develop high-quality training datasets for machine learning applications. The platform provides two distinct options, namely Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which grant users the capability to either leverage a professional workforce to oversee and execute data labeling workflows or independently manage their own labeling processes. For those seeking greater autonomy in crafting and handling their personal data labeling workflows, SageMaker Ground Truth serves as an effective solution. This service simplifies the data labeling process and offers flexibility by enabling the use of human annotators through Amazon Mechanical Turk, external vendors, or even your own in-house team, thereby accommodating various project needs and preferences. Ultimately, SageMaker's comprehensive approach to data annotation helps streamline the development of machine learning models, making it an invaluable tool for data scientists and organizations alike. -
18
Encord
Encord
The best data will help you achieve peak model performance. Create and manage training data for any visual modality. Debug models, boost performance and make foundation models yours. Expert review, QA, and QC workflows will help you deliver better datasets to your artificial-intelligence teams, improving model performance. Encord's Python SDK allows you to connect your data and models, and create pipelines that automate the training of ML models. Improve model accuracy by identifying biases and errors in your data, labels, and models. -
19
Innodata
Innodata
We make data for the world's most valuable companies. Innodata solves your most difficult data engineering problems using artificial intelligence and human expertise. Innodata offers the services and solutions that you need to harness digital information at scale and drive digital disruption within your industry. We secure and efficiently collect and label sensitive data. This provides ground truth that is close to 100% for AI and ML models. Our API is simple to use and ingests unstructured data, such as contracts and medical records, and generates structured XML that conforms to schemas for downstream applications and analytics. We make sure that mission-critical databases are always accurate and up-to-date. -
20
Appen
Appen
Appen combines the intelligence of over one million people around the world with cutting-edge algorithms to create the best training data for your ML projects. Upload your data to our platform, and we will provide all the annotations and labels necessary to create ground truth for your models. An accurate annotation of data is essential for any AI/ML model to be trained. This is how your model will make the right judgments. Our platform combines human intelligence with cutting-edge models to annotation all types of raw data. This includes text, video, images, audio and video. It creates the exact ground truth for your models. Our user interface is easy to use, and you can also programmatically via our API. -
21
Hive Data
Hive
$25 per 1,000 annotationsDevelop training datasets for computer vision models using our comprehensive management solution. We are convinced that the quality of data labeling plays a crucial role in crafting successful deep learning models. Our mission is to establish ourselves as the foremost data labeling platform in the industry, enabling businesses to fully leverage the potential of AI technology. Organize your media assets into distinct categories for better management. Highlight specific items of interest using one or multiple bounding boxes to enhance detection accuracy. Utilize bounding boxes with added precision for more detailed annotations. Provide accurate measurements of width, depth, and height for various objects. Classify every pixel in an image for fine-grained analysis. Identify and mark individual points to capture specific details within images. Annotate straight lines to assist in geometric assessments. Measure critical attributes like yaw, pitch, and roll for items of interest. Keep track of timestamps in both video and audio content for synchronization purposes. Additionally, annotate freeform lines in images to capture more complex shapes and designs, enhancing the depth of your data labeling efforts. -
22
SuperAnnotate
SuperAnnotate
1 RatingSuperAnnotate is the best platform to build high-quality training datasets for NLP and computer vision. We enable machine learning teams to create highly accurate datasets and successful pipelines of ML faster with advanced tooling, QA, ML, and automation features, data curation and robust SDK, offline accessibility, and integrated annotation services. We have created a unified annotation environment by bringing together professional annotators and our annotation tool. This allows us to provide integrated software and services that will lead to better quality data and more efficient data processing. -
23
Your software can see objects in video and images. A few dozen images can be used to train a computer vision model. This takes less than 24 hours. We support innovators just like you in applying computer vision. Upload files via API or manually, including images, annotations, videos, and audio. There are many annotation formats that we support and it is easy to add training data as you gather it. Roboflow Annotate was designed to make labeling quick and easy. Your team can quickly annotate hundreds upon images in a matter of minutes. You can assess the quality of your data and prepare them for training. Use transformation tools to create new training data. See what configurations result in better model performance. All your experiments can be managed from one central location. You can quickly annotate images right from your browser. Your model can be deployed to the cloud, the edge or the browser. Predict where you need them, in half the time.
-
24
V7 Darwin
V7
$150V7 Darwin is a data labeling and training platform designed to automate and accelerate the process of creating high-quality datasets for machine learning. With AI-assisted labeling and tools for annotating images, videos, and more, V7 makes it easy for teams to create accurate and consistent data annotations quickly. The platform supports complex tasks such as segmentation and keypoint labeling, allowing businesses to streamline their data preparation process and improve model performance. V7 Darwin also offers real-time collaboration and customizable workflows, making it suitable for enterprises and research teams alike. -
25
MLflow
MLflow
MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models. -
26
UHRS (Universal Human Relevance System)
Microsoft
For tasks such as transcription, data validation, classification, sentiment analysis, and more, UHRS offers comprehensive solutions tailored to your needs. We leverage human intelligence to enhance machine learning models, aiding you in overcoming some of your toughest challenges. Judges can conveniently access UHRS from anywhere at any time with just an internet connection. This streamlined access allows for quick engagement with tasks like video annotation within minutes. With UHRS, managing the classification of thousands of images becomes a straightforward and efficient process. Our platform enables the training of your products and tools through high-quality annotated image data, enhancing capabilities like image detection and boundary recognition. You can efficiently classify images, conduct semantic segmentation, and implement object detection. In addition, we facilitate audio-to-text validation, conversation analysis, and relevance checks. Furthermore, our services extend to sentiment identification for tweets, document classification, and various ad hoc data collection tasks, including information correction, moderation, and conducting surveys. With UHRS, you gain a versatile partner in navigating a wide range of data-related challenges. -
27
Weights & Biases
Weights & Biases
Utilize Weights & Biases (WandB) for experiment tracking, hyperparameter tuning, and versioning of both models and datasets. With just five lines of code, you can efficiently monitor, compare, and visualize your machine learning experiments. Simply enhance your script with a few additional lines, and each time you create a new model version, a fresh experiment will appear in real-time on your dashboard. Leverage our highly scalable hyperparameter optimization tool to enhance your models' performance. Sweeps are designed to be quick, easy to set up, and seamlessly integrate into your current infrastructure for model execution. Capture every aspect of your comprehensive machine learning pipeline, encompassing data preparation, versioning, training, and evaluation, making it incredibly straightforward to share updates on your projects. Implementing experiment logging is a breeze; just add a few lines to your existing script and begin recording your results. Our streamlined integration is compatible with any Python codebase, ensuring a smooth experience for developers. Additionally, W&B Weave empowers developers to confidently create and refine their AI applications through enhanced support and resources. -
28
SUPA
SUPA
Supercharge your AI with human expertise. SUPA is here to help you streamline your data at any stage: collection, curation, annotation, model validation and human feedback. Better data, better AI. SUPA is trusted by AI teams to solve their human data needs. -
29
Intel Geti
Intel
Intel® Geti™ software streamlines the creation of computer vision models through efficient data annotation and training processes. It offers features such as intelligent annotations, active learning, and task chaining, allowing users to develop models for tasks like classification, object detection, and anomaly detection without needing to write extra code. Furthermore, the platform includes optimizations, hyperparameter tuning, and models that are ready for production and optimized for Intel’s OpenVINO™ toolkit. Intended to facilitate teamwork, Geti™ enhances collaboration by guiding teams through the entire model development lifecycle, from labeling data to deploying models effectively. This comprehensive approach ensures that users can focus on refining their models while minimizing technical hurdles. -
30
Automaton AI
Automaton AI
With Automaton AI's ADVIT, users can effortlessly create, manage, and enhance high-quality training data alongside DNN models, all within a single platform. The tool automatically optimizes data and prepares it for various stages of the computer vision pipeline. It also automates data labeling and simplifies in-house data pipelines. Users can handle both structured and unstructured datasets, including video, image, and text, while performing automatic functions that refine data for each phase of the deep learning process. Once data is accurately labeled and undergoes quality assurance, users can initiate their own model training. DNN training requires hyperparameter adjustments, such as batch size and learning rate, to maximize efficiency. Additionally, the platform supports optimization and transfer learning on existing models to enhance overall accuracy. After training, users can seamlessly deploy their models into production. ADVIT also provides model versioning capabilities, allowing for real-time tracking of development and accuracy metrics. By utilizing a pre-trained DNN model for auto-labeling, users can further improve their model's accuracy, ensuring optimal outcomes throughout the entire machine learning lifecycle. This comprehensive solution not only streamlines the development process but also empowers users to achieve remarkable results in their projects. -
31
Alegion
Alegion
$5000A powerful labeling platform for all stages and types of ML development. We leverage a suite of industry-leading computer vision algorithms to automatically detect and classify the content of your images and videos. Creating detailed segmentation information is a time-consuming process. Machine assistance speeds up task completion by as much as 70%, saving you both time and money. We leverage ML to propose labels that accelerate human labeling. This includes computer vision models to automatically detect, localize, and classify entities in your images and videos before handing off the task to our workforce. Automatic labelling reduces workforce costs and allows annotators to spend their time on the more complicated steps of the annotation process. Our video annotation tool is built to handle 4K resolution and long-running videos natively and provides innovative features like interpolation, object proposal, and entity resolution. -
32
Tictag
Tictag
Your AI warrants top-notch data. With an impressive accuracy rate of 99%, you can eliminate the hassle of acquiring machine learning datasets using Tictag's innovative mobile data platform along with Truetag's rigorous quality control. Tictag’s pioneering mobile data platform integrates a user-friendly design with engaging, gamified features to generate high-quality datasets, all supported by our unique Truetag quality assurance system. This represents the pinnacle of technology-driven labeling. Tictag adeptly gathers and annotates even the most complex datasets with exceptional accuracy for AI and ML applications, ensuring rapid turnaround times. The process of data labeling has reached unprecedented levels of speed and simplicity. Complete it once and do it correctly; Tictag's technologically enhanced Truetag quality control guarantees that your data meets your specific requirements. Additionally, through Tictag, your data demands create opportunities for individuals seeking alternative income sources or aspiring to acquire new skills. Thus, Tictag not only enhances your AI capabilities but also contributes to skill development in the community. -
33
Sixgill Sense
Sixgill
The entire process of machine learning and computer vision is streamlined and expedited through a single no-code platform. Sense empowers users to create and implement AI IoT solutions across various environments, whether in the cloud, at the edge, or on-premises. Discover how Sense delivers ease, consistency, and transparency for AI/ML teams, providing robust capabilities for machine learning engineers while remaining accessible for subject matter experts. With Sense Data Annotation, you can enhance your machine learning models by efficiently labeling video and image data, ensuring the creation of high-quality training datasets. The platform also features one-touch labeling integration, promoting ongoing machine learning at the edge and simplifying the management of all your AI applications, thereby maximizing efficiency and effectiveness. This comprehensive approach makes Sense an invaluable tool for a wide range of users, regardless of their technical background. -
34
Supervisely
Supervisely
The premier platform designed for the complete computer vision process allows you to evolve from image annotation to precise neural networks at speeds up to ten times quicker. Utilizing our exceptional data labeling tools, you can convert your images, videos, and 3D point clouds into top-notch training data. This enables you to train your models, monitor experiments, visualize results, and consistently enhance model predictions, all while constructing custom solutions within a unified environment. Our self-hosted option ensures data confidentiality, offers robust customization features, and facilitates seamless integration with your existing technology stack. This comprehensive solution for computer vision encompasses multi-format data annotation and management, large-scale quality control, and neural network training within an all-in-one platform. Crafted by data scientists for their peers, this powerful video labeling tool draws inspiration from professional video editing software and is tailored for machine learning applications and beyond. With our platform, you can streamline your workflow and significantly improve the efficiency of your computer vision projects. -
35
Nexdata
Nexdata
Nexdata's AI Data Annotation Platform serves as a comprehensive solution tailored to various data annotation requirements, encompassing an array of types like 3D point cloud fusion, pixel-level segmentation, speech recognition, speech synthesis, entity relationships, and video segmentation. It is equipped with an advanced pre-recognition engine that improves human-machine interactions and enables semi-automatic labeling, boosting labeling efficiency by more than 30%. To maintain superior data quality, the platform integrates multi-tier quality inspection management and allows for adaptable task distribution workflows, which include both package-based and item-based assignments. Emphasizing data security, it implements a robust system of multi-role and multi-level authority management, along with features such as template watermarking, log auditing, login verification, and API authorization management. Additionally, the platform provides versatile deployment options, including public cloud deployment that facilitates quick and independent system setup while ensuring dedicated computing resources. This combination of features makes Nexdata's platform not only efficient but also highly secure and adaptable to various operational needs. -
36
SambaNova
SambaNova Systems
SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. At the heart of SambaNova innovation is the fourth generation SN40L Reconfigurable Dataflow Unit (RDU). Purpose built for AI workloads, the SN40L RDU takes advantage of a dataflow architecture and a three-tiered memory design. The dataflow architecture eliminates the challenges that GPUs have with high performance inference. The three tiers of memory enable the platform to run hundreds of models on a single node and to switch between them in microseconds. We give our customers the optionality to experience through the cloud or on-premise. -
37
Colabeler
Colabeler
Image categorization, bounding box detection, polygon annotation, curve tracing, and 3D positioning. Additionally, video tracking, text categorization, and named entity recognition are supported. Custom task plugins allow users to develop their own labeling tools. Files can be exported in PascalVoc XML format, identical to that used by ImageNet, as well as in CoreNLP format. The platform is compatible with Windows, Mac, CentOS, and Ubuntu operating systems. This versatility ensures that users can seamlessly integrate it into their existing workflows. -
38
Mindkosh
Mindkosh AI
$30/user/ month Mindkosh is your premier data management platform, streamlining the curation, tagging, and verification of datasets for AI initiatives. Our top-tier data annotation platform merges team-oriented functionalities with AI-enhanced annotation tools, delivering an all-encompassing toolkit for categorizing diverse data types, including images, videos, and 3D point clouds from Lidar. For images, Mindkosh offers advanced semi-automated segmentation, pre-labeling of bounding boxes, and completely automatic OCR capabilities. For video annotation, Mindkosh's automated interpolation significantly reduces the need for manual labeling. And for Lidar data, single-click annotation enables swift cuboid generation with just one click. If you are simply looking to get your data labeled, our high quality data annotation services combined with an easy to use Python SDK and web-based review platform, provide an unmatched experience. -
39
Label Your Data
Label Your Data
Our company is the premier provider of data labeling services in AI. We cover industries like Automotive, Robotics, Fintech, Healthcare, E-commerce, Manufacturing, and Insurance. With over 500+ annotation gurus and multilingual support, we provide efficient and accurate services for both enterprise and R&D projects. Our range of services includes Computer Vision and NLP annotation, data processing, and more. Choose Label Your Data for unparalleled quality of your training datasets. Our top priority is to ensure the security and quality of client's data. To ensure the confidentiality of client data, our facilities and teams have been certified by ISO 27001 and PCI DSS (level 1). We adhere to the most important industry security standards, such as GDPR and CCPA. -
40
Deepen
Deepen
Deepen AI provides cutting-edge tools and services for multi-sensor data labeling and calibration, aimed at enhancing the training process for computer vision applications in autonomous vehicles, robotics, and beyond. Their annotation suite addresses numerous critical use cases, which include 2D and 3D bounding boxes, semantic and instance segmentation, polylines, and key points. Powered by artificial intelligence, the platform boasts pre-labeling features that can automatically tag up to 80 commonly used classes, resulting in a productivity boost of seven times. Additionally, it incorporates machine learning-assisted segmentation, enabling users to segment objects effortlessly with minimal clicks, alongside precise object detection and tracking across frames to eliminate redundancy and conserve time. Furthermore, Deepen AI’s calibration suite accommodates all essential sensor types, such as LiDAR, cameras, radar, IMUs, and vehicle sensors. These sophisticated tools facilitate seamless visualization and inspection of the integrity of multi-sensor data, while also allowing for the rapid calculation of intrinsic and extrinsic calibration parameters in mere seconds. By streamlining these processes, Deepen AI empowers developers to focus more on innovation and less on manual data handling. -
41
Toloka AI
Toloka AI
Toloka AI was founded in 2014 after years spent research and experimentation. It is an open platform for collecting data and annotating it. There are over 20 000+ active monthly performers in over 100+ countries. They speak 40+ languages and generate approximately 80 million data annotations each week. Toloka is used by R&D, banking and autonomous vehicles as well as other organizations to generate machine-learning data at scale. It also harnesses the wisdom of the crowd from all over the globe. Gartner ranked Toloka as one of the most notable data labeling solutions in the market in its Hype Cycle for Data Science & ML report. -
42
Diffgram Data Labeling
Diffgram
FreeYour AI Data Platform High Quality Training Data for Enterprise Data Labeling Software for Machine Learning Your Kubernetes Cluster up to 3 users is free TRUSTED BY 5,000 HAPPY UBERS WORLDWIDE Images, Video, and Text Spatial Tools Quadratic Curves and Cuboids, Segmentation Box, Polygons and Lines, Keypoints, Classification tags, and More You can use the exact spatial tool that you need. All tools are easy-to-use, editable, and offer powerful ways to present your data. All tools are available as Video. Attribute Tools More Meaning. More freedom through: Radio buttons Multiple selection. Date pickers. Sliders. Conditional logic. Directional vectors. Plus, many more! Complex knowledge can be captured and encoded into your AI. Streaming Data Automation Manual labeling can be up to 10x faster than automated labeling -
43
Klatch
Klatch Technologies
Klatch Technologies is a global provider of data services that helps companies and institutions collect and annotate data. We support Artificial Intelligence companies, research institutes, Machine Learning and Computer Vision projects in data labeling. Our specialists provide high-quality data security, rapid scalability and accuracy, as well as multilingual capability and quick turnaround time. Data Annotation Services Image Annotation Video Annotation Search Relevance Annotation for Text NLP Text classification Sentiment Analysis Image Segmentation LIDAR Annotation - Data collection services: Healthcare Training Data Chatbot Training Data All other data collection requirements IT Managed Services Moderation of Content Ecommerce Data Categorization -
44
Clarifai
Clarifai
$0Clarifai is a leading AI platform for modeling image, video, text and audio data at scale. Our platform combines computer vision, natural language processing and audio recognition as building blocks for building better, faster and stronger AI. We help enterprises and public sector organizations transform their data into actionable insights. Our technology is used across many industries including Defense, Retail, Manufacturing, Media and Entertainment, and more. We help our customers create innovative AI solutions for visual search, content moderation, aerial surveillance, visual inspection, intelligent document analysis, and more. Founded in 2013 by Matt Zeiler, Ph.D., Clarifai has been a market leader in computer vision AI since winning the top five places in image classification at the 2013 ImageNet Challenge. Clarifai is headquartered in Delaware -
45
Prodigy
Explosion
$490 one-time feeRevolutionary machine teaching is here with an exceptionally efficient annotation tool driven by active learning. Prodigy serves as a customizable annotation platform so effective that data scientists can handle the annotation process themselves, paving the way for rapid iteration. The advancements in today's transfer learning technologies allow for the training of high-quality models using minimal examples. By utilizing Prodigy, you can fully leverage contemporary machine learning techniques, embracing a more flexible method for data gathering. This will enable you to accelerate your workflow, gain greater autonomy, and deliver significantly more successful projects. Prodigy merges cutting-edge insights from the realms of machine learning and user experience design. Its ongoing active learning framework ensures that you only need to annotate those examples the model is uncertain about. The web application is not only powerful and extensible but also adheres to the latest user experience standards. The brilliance lies in its straightforward design: it encourages you to concentrate on one decision at a time, keeping you actively engaged – akin to a swipe-right approach for data. Additionally, this streamlined process fosters a more enjoyable and effective annotation experience overall. -
46
CrowdAI
CrowdAI
Effectively oversee the complete AI pipeline, beginning with raw data and culminating in its deployment. Develop tailored models that align closely with your operational needs, providing a strategic edge in the marketplace. Foster a varied AI team capable of constructing and launching AI solutions effortlessly, without requiring coding skills. Implement AI solutions in diverse settings, whether on a manufacturing floor, in space exploration, or anywhere else. Commit to a reliable platform that has been successfully utilized in highly sensitive data environments. Utilize guided workflows to assist you in creating your initial model. Instead of separating enterprise data across various cloud services and hardware, consolidate all assets into a single, well-organized library that enhances ease of discovery for users. This holistic approach not only streamlines processes but also maximizes the potential for innovation and efficiency across your organization. -
47
Keylabs
Keylabs
$1/hour Keylabs.ai is an image and video annotation platform built by annotation experts to deliver high-performance data annotation and management features and unique operations management. Its tools have a proven track record of handling large datasets efficiently and accurately. Trusted by global technology leaders, Keylabs.ai combines innovative technology with user-focused design to deliver solutions to projects of any type and size. -
48
Anolytics
Anolytics
Anolytics specializes in providing data annotation services for images, videos, and text, specifically tailored for machine learning and AI-driven computer vision applications. Their offerings include an economical annotation service aimed at facilitating the development of machine learning and artificial intelligence models. By utilizing various annotation techniques, Anolytics ensures that the data is accurately and precisely annotated, whether in text, image, or video formats. The company excels in Image Annotation, Video Annotation, and Text Annotation, maintaining high standards of accuracy throughout the process. Anolytics delivers a comprehensive range of data annotation services essential for training in both machine learning and deep learning environments. Their services encompass Bounding Boxes, Semantic Segmentation, 3D Point Cloud Annotation, and 3D Cuboid Annotation, catering to diverse industries such as healthcare, autonomous driving, drone operations, retail, security surveillance, and agriculture. With a focus on scalability, Anolytics ensures its solutions are available with rapid turnaround times and competitive pricing for clients around the world, thereby enhancing their accessibility and effectiveness in various applications. This commitment to quality and efficiency positions Anolytics as a leader in the data annotation industry. -
49
Sama
Sama
We guarantee top-notch service level agreements (SLAs) exceeding 95%, even for the most intricate workflows. Our dedicated team is on hand to assist with everything, from establishing a solid quality evaluation framework to addressing unique edge cases. As a socially responsible AI organization, we have created economic opportunities for more than 52,000 individuals from underrepresented and disadvantaged backgrounds. Through machine learning-assisted annotation, we achieve efficiency improvements of up to four times for single-class tasks. Our agile approach allows us to swiftly adjust to changes in project demands, focus shifts, and unforeseen challenges. Our ISO-certified delivery centers, along with biometric and two-factor authentication, ensure a secure operational environment. We facilitate the seamless reorganization of tasks, offer constructive feedback, and oversee models in active use. Our services encompass all data types, enabling you to achieve more with fewer resources. By integrating machine learning with human oversight, we meticulously filter data and curate images that align with your specific requirements. You will receive example results that adhere to your initial criteria, and we will collaborate with you to pinpoint edge cases while suggesting optimal annotation practices. Additionally, our commitment to quality ensures that every step of the process enhances the overall effectiveness of your project. -
50
Zastra
RoundSqr
Enhance the platform to incorporate annotation capabilities specifically for segmentation tasks. Within the Zastra repository, innovative algorithms will facilitate segmentation processes to bolster active learning for various datasets. Comprehensive end-to-end ML operations will be implemented, complete with version control for datasets and experiments, alongside templated pipelines that enable model deployment across standard cloud environments and edge devices. By integrating advancements in Bayesian deep learning into the active learning framework, we aim to elevate the overall performance. Moreover, we will refine the accuracy of annotations using specialized architectures, such as Bayesian CNNs, ensuring superior results. Our dedicated team has invested extensive time and effort into developing this groundbreaking solution tailored for your needs. Though we are continuously enhancing the platform with new features, we eagerly invite you to experience a trial run! Zastra boasts a range of core functionalities, including active learning for object classification, detection, localization, and segmentation, applicable across various formats like images, videos, audio, text, and point cloud data. This versatility positions Zastra as a comprehensive tool to tackle diverse data challenges effectively.