What Integrates with Velotix?
Find out what Velotix integrations exist in 2025. Learn what software and services currently integrate with Velotix, and sort them by reviews, cost, features, and more. Below is a list of products that Velotix currently integrates with:
-
1
Google Cloud Platform
Google
Free ($300 in free credits) 56,320 RatingsGoogle Cloud is an online service that lets you create everything from simple websites to complex apps for businesses of any size. Customers who are new to the system will receive $300 in credits for testing, deploying, and running workloads. Customers can use up to 25+ products free of charge. Use Google's core data analytics and machine learning. All enterprises can use it. It is secure and fully featured. Use big data to build better products and find answers faster. You can grow from prototypes to production and even to planet-scale without worrying about reliability, capacity or performance. Virtual machines with proven performance/price advantages, to a fully-managed app development platform. High performance, scalable, resilient object storage and databases. Google's private fibre network offers the latest software-defined networking solutions. Fully managed data warehousing and data exploration, Hadoop/Spark and messaging. -
2
Google Cloud BigQuery
Google
Free ($300 in free credits) 1,734 RatingsBigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises. Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently. -
3
MongoDB
MongoDB
Free 21 RatingsMongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges. -
4
Microsoft Azure
Microsoft
21 RatingsMicrosoft Azure serves as a versatile cloud computing platform that facilitates swift and secure development, testing, and management of applications. With Azure, you can innovate purposefully, transforming your concepts into actionable solutions through access to over 100 services that enable you to build, deploy, and manage applications in various environments—be it in the cloud, on-premises, or at the edge—utilizing your preferred tools and frameworks. The continuous advancements from Microsoft empower your current development needs while also aligning with your future product aspirations. Committed to open-source principles and accommodating all programming languages and frameworks, Azure allows you the freedom to build in your desired manner and deploy wherever it suits you best. Whether you're operating on-premises, in the cloud, or at the edge, Azure is ready to adapt to your current setup. Additionally, it offers services tailored for hybrid cloud environments, enabling seamless integration and management. Security is a foundational aspect, reinforced by a team of experts and proactive compliance measures that are trusted by enterprises, governments, and startups alike. Ultimately, Azure represents a reliable cloud solution, backed by impressive performance metrics that validate its trustworthiness. This platform not only meets your needs today but also equips you for the evolving challenges of tomorrow. -
5
If you're in need of computing power, database solutions, content distribution, or various other functionalities, AWS offers a wide array of services designed to assist you in developing advanced applications with enhanced flexibility, scalability, and reliability. Amazon Web Services (AWS) stands as the most extensive and widely utilized cloud platform globally, boasting over 175 fully functional services spread across data centers worldwide. A diverse range of customers, from rapidly expanding startups to major corporations and prominent government bodies, are leveraging AWS to reduce expenses, enhance agility, and accelerate innovation. AWS provides a larger selection of services, along with more features within those services, compared to any other cloud provider—covering everything from fundamental infrastructure technologies like computing, storage, and databases to cutting-edge innovations such as machine learning, artificial intelligence, data lakes, analytics, and the Internet of Things. This breadth of offerings facilitates a quicker, simpler, and more cost-effective transition of your current applications to the cloud, ensuring that you can stay ahead in a competitive landscape while taking advantage of the latest technological advancements.
-
6
Tableau, an industry-leading analytics platform, empowers businesses to make smarter, data-driven decisions with AI-powered insights and advanced data visualization. By leveraging Tableau Next, which integrates seamlessly with Salesforce and Agentforce, users can access intelligent analytics and unlock the full potential of their data. Tableau provides flexible deployment options—whether cloud-based, on-premises, or directly integrated with Salesforce CRM—ensuring organizations can access a comprehensive data management solution. With built-in AI and machine learning capabilities, Tableau helps users uncover patterns, predict outcomes, and improve decision-making at every level of the organization. Its intuitive interface allows analysts, business leaders, and IT teams to explore data, visualize trends, and collaborate efficiently, while fostering a Data Culture that accelerates innovation and enhances operational efficiency.
-
7
MySQL stands out as the most widely used open source database globally. Thanks to its established track record in performance, dependability, and user-friendliness, it has emerged as the preferred database for web applications, powering notable platforms such as Facebook, Twitter, and YouTube, alongside the top five websites. Furthermore, MySQL is also highly favored as an embedded database solution, being distributed by numerous independent software vendors and original equipment manufacturers. Its versatility and robust features contribute to its widespread adoption across various industries.
-
8
Snowflake offers a unified AI Data Cloud platform that transforms how businesses store, analyze, and leverage data by eliminating silos and simplifying architectures. It features interoperable storage that enables seamless access to diverse datasets at massive scale, along with an elastic compute engine that delivers leading performance for a wide range of workloads. Snowflake Cortex AI integrates secure access to cutting-edge large language models and AI services, empowering enterprises to accelerate AI-driven insights. The platform’s cloud services automate and streamline resource management, reducing complexity and cost. Snowflake also offers Snowgrid, which securely connects data and applications across multiple regions and cloud providers for a consistent experience. Their Horizon Catalog provides built-in governance to manage security, privacy, compliance, and access control. Snowflake Marketplace connects users to critical business data and apps to foster collaboration within the AI Data Cloud network. Serving over 11,000 customers worldwide, Snowflake supports industries from healthcare and finance to retail and telecom.
-
9
SQL Server
Microsoft
Free 2 RatingsMicrosoft SQL Server 2019 incorporates both intelligence and security, providing users with added features at no additional cost while ensuring top-tier performance and adaptability for on-premises requirements. You can seamlessly transition to the cloud, taking full advantage of its efficiency and agility without the need to alter your existing code. By leveraging Azure, you can accelerate insight generation and predictive analytics. Development is flexible, allowing you to utilize your preferred technologies, including open-source options, supported by Microsoft's advancements. The platform enables easy data integration into your applications and offers a comprehensive suite of cognitive services that facilitate the creation of human-like intelligence, regardless of data volume. The integration of AI is intrinsic to the data platform, allowing for quicker insight extraction from both on-premises and cloud-stored data. By combining your unique enterprise data with global data, you can foster an organization that is driven by intelligence. The dynamic data platform provides a consistent user experience across various environments, expediting the time it takes to bring innovations to market; this allows you to develop your applications and deploy them in any environment you choose, enhancing overall operational efficiency. -
10
Azure Synapse Analytics
Microsoft
1 RatingAzure Synapse represents the advanced evolution of Azure SQL Data Warehouse. It is a comprehensive analytics service that integrates enterprise data warehousing with Big Data analytics capabilities. Users can query data flexibly, choosing between serverless or provisioned resources, and can do so at scale. By merging these two domains, Azure Synapse offers a cohesive experience for ingesting, preparing, managing, and delivering data, catering to the immediate requirements of business intelligence and machine learning applications. This integration enhances the efficiency and effectiveness of data-driven decision-making processes. -
11
Teradata VantageCloud
Teradata
1 RatingVantageCloud by Teradata is a next-gen cloud analytics ecosystem built to unify disparate data sources, deliver real-time AI-powered insights, and drive enterprise innovation with unprecedented efficiency. The platform includes VantageCloud Lake, designed for elastic scalability and GPU-accelerated AI workloads, and VantageCloud Enterprise, which supports robust analytics capabilities across secure hybrid and multi-cloud deployments. It seamlessly integrates with leading cloud providers like AWS, Azure, and Google Cloud, and supports open table formats like Apache Iceberg for greater data flexibility. With built-in support for advanced analytics, workload management, and cross-functional collaboration, VantageCloud provides the agility and power modern enterprises need to accelerate digital transformation and optimize operational outcomes. -
12
Amazon Redshift
Amazon
$0.25 per hourAmazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes. -
13
Trino
Trino
FreeTrino is a remarkably fast query engine designed to operate at exceptional speeds. It serves as a high-performance, distributed SQL query engine tailored for big data analytics, enabling users to delve into their vast data environments. Constructed for optimal efficiency, Trino excels in low-latency analytics and is extensively utilized by some of the largest enterprises globally to perform queries on exabyte-scale data lakes and enormous data warehouses. It accommodates a variety of scenarios, including interactive ad-hoc analytics, extensive batch queries spanning several hours, and high-throughput applications that require rapid sub-second query responses. Trino adheres to ANSI SQL standards, making it compatible with popular business intelligence tools like R, Tableau, Power BI, and Superset. Moreover, it allows direct querying of data from various sources such as Hadoop, S3, Cassandra, and MySQL, eliminating the need for cumbersome, time-consuming, and error-prone data copying processes. This capability empowers users to access and analyze data from multiple systems seamlessly within a single query. Such versatility makes Trino a powerful asset in today's data-driven landscape. -
14
Azure SQL Database
Microsoft
$0.5218 per vCore-hourAzure SQL Database, a member of the Azure SQL suite, is a sophisticated and adaptable relational database service designed specifically for cloud environments. It is continuously updated, ensuring you benefit from the latest advancements, including AI-driven features that enhance both performance and reliability. With serverless computing and Hyperscale storage options, resources can effortlessly adjust according to your needs, allowing you to concentrate on creating innovative applications without the stress of managing storage or resources. This fully managed SQL database simplifies the challenges of ensuring high availability, performing tuning, handling backups, and executing other essential database management tasks. You can expedite your application development on the unique cloud platform that offers evergreen SQL, utilizing up-to-date SQL Server features while remaining free from concerns about updates, upgrades, or the end of support. Customize your modern app development experience with both provisioned and serverless compute choices, ensuring flexibility and efficiency tailored to your specific needs. This way, you can unleash your creativity while relying on a robust foundation. -
15
Samplead
Samplead
Samplead is an innovative platform powered by AI, aimed at transforming outbound sales with a more intelligent method for discovering and interacting with ideal customer profiles (ICPs). By automating the identification of promising prospects through trigger-based insights, it examines online behaviors and buyer intent to reveal pertinent leads. The platform generates customized messaging sequences specifically designed for each prospect, thereby greatly improving engagement and conversion rates. Additionally, Samplead integrates effortlessly with widely-used sales tools, facilitating a seamless workflow within established sales operations. With its extensive analytics capabilities, sales teams can monitor campaign effectiveness, adjust targeting approaches, and enhance outreach strategies for optimal results. Furthermore, Samplead's user-friendly interface ensures that teams can quickly adapt to the platform and leverage its features efficiently. -
16
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
17
Oracle Cloud Infrastructure
Oracle
Oracle Cloud Infrastructure not only accommodates traditional workloads but also provides advanced cloud development tools for modern needs. It is designed with the capability to identify and counteract contemporary threats, empowering innovation at a faster pace. By merging affordability with exceptional performance, it effectively reduces total cost of ownership. As a Generation 2 enterprise cloud, Oracle Cloud boasts impressive compute and networking capabilities while offering an extensive range of infrastructure and platform cloud services. Specifically engineered to fulfill the requirements of mission-critical applications, Oracle Cloud seamlessly supports all legacy workloads, allowing businesses to transition from their past while crafting their future. Notably, our Generation 2 Cloud is uniquely equipped to operate Oracle Autonomous Database, recognized as the industry's first and only self-driving database. Furthermore, Oracle Cloud encompasses a wide-ranging portfolio of cloud computing solutions, spanning application development, business analytics, data management, integration, security, artificial intelligence, and blockchain technology, ensuring that businesses have all the tools they need to thrive in a digital landscape. This comprehensive approach positions Oracle Cloud as a leader in the evolving cloud marketplace. -
18
PostgreSQL
PostgreSQL Global Development Group
PostgreSQL stands out as a highly capable, open-source object-relational database system that has been actively developed for more than three decades, earning a solid reputation for its reliability, extensive features, and impressive performance. Comprehensive resources for installation and usage are readily available in the official documentation, which serves as an invaluable guide for both new and experienced users. Additionally, the open-source community fosters numerous forums and platforms where individuals can learn about PostgreSQL, understand its functionalities, and explore job opportunities related to it. Engaging with this community can enhance your knowledge and connection to the PostgreSQL ecosystem. Recently, the PostgreSQL Global Development Group announced updates for all supported versions, including 15.1, 14.6, 13.9, 12.13, 11.18, and 10.23, which address 25 reported bugs from the past few months. Notably, this marks the final release for PostgreSQL 10, meaning that it will no longer receive any security patches or bug fixes going forward. Therefore, if you are currently utilizing PostgreSQL 10 in your production environment, it is highly recommended that you plan to upgrade to a more recent version to ensure continued support and security. Upgrading will not only help maintain the integrity of your data but also allow you to take advantage of the latest features and improvements introduced in newer releases. -
19
AWS Lake Formation
Amazon
AWS Lake Formation is a service designed to streamline the creation of a secure data lake in just a matter of days. A data lake serves as a centralized, carefully organized, and protected repository that accommodates all data, maintaining both its raw and processed formats for analytical purposes. By utilizing a data lake, organizations can eliminate data silos and integrate various analytical approaches, leading to deeper insights and more informed business choices. However, the traditional process of establishing and maintaining data lakes is often burdened with labor-intensive, complex, and time-consuming tasks. This includes activities such as importing data from various sources, overseeing data flows, configuring partitions, enabling encryption and managing encryption keys, defining and monitoring transformation jobs, reorganizing data into a columnar structure, removing duplicate records, and linking related entries. After data is successfully loaded into the data lake, it is essential to implement precise access controls for datasets and continuously monitor access across a broad spectrum of analytics and machine learning tools and services. The comprehensive management of these tasks can significantly enhance the overall efficiency and security of data handling within an organization. -
20
Cloudera
Cloudera
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient. -
21
Denodo
Denodo Technologies
The fundamental technology that powers contemporary solutions for data integration and management is designed to swiftly link various structured and unstructured data sources. It allows for the comprehensive cataloging of your entire data environment, ensuring that data remains within its original sources and is retrieved as needed, eliminating the requirement for duplicate copies. Users can construct data models tailored to their needs, even when drawing from multiple data sources, while also concealing the intricacies of back-end systems from end users. The virtual model can be securely accessed and utilized through standard SQL alongside other formats such as REST, SOAP, and OData, promoting easy access to diverse data types. It features complete data integration and modeling capabilities, along with an Active Data Catalog that enables self-service for data and metadata exploration and preparation. Furthermore, it incorporates robust data security and governance measures, ensures rapid and intelligent execution of data queries, and provides real-time data delivery in various formats. The system also supports the establishment of data marketplaces and effectively decouples business applications from data systems, paving the way for more informed, data-driven decision-making strategies. This innovative approach enhances the overall agility and responsiveness of organizations in managing their data assets. -
22
Apache Hadoop YARN
Apache Software Foundation
YARN's core concept revolves around the division of resource management and job scheduling/monitoring into distinct daemons, aiming for a centralized ResourceManager (RM) alongside individual ApplicationMasters (AM) for each application. Each application can be defined as either a standalone job or a directed acyclic graph (DAG) of jobs. Together, the ResourceManager and NodeManager create the data-computation framework, with the ResourceManager serving as the primary authority that allocates resources across all applications in the environment. Meanwhile, the NodeManager acts as the local agent on each machine, overseeing containers and tracking their resource consumption, including CPU, memory, disk, and network usage, while also relaying this information back to the ResourceManager or Scheduler. The ApplicationMaster functions as a specialized library specific to its application, responsible for negotiating resources with the ResourceManager and coordinating with the NodeManager(s) to efficiently execute and oversee the execution of tasks, ensuring optimal resource utilization and job performance throughout the process. This separation allows for more scalable and efficient management in complex computing environments.
- Previous
- You're on page 1
- Next