Best Vectice Alternatives in 2025

Find the top alternatives to Vectice currently available. Compare ratings, reviews, pricing, and features of Vectice alternatives in 2025. Slashdot lists the best Vectice alternatives on the market that offer competing products that are similar to Vectice. Sort through Vectice alternatives below to make the best choice for your needs

  • 1
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 2
    Posit Reviews
    One source of truth for R packages and Python packages RStudio is the preferred professional data science solution for every group. A Python and R integrated development environment with syntax-highlighting editor, console, and code execution. It also includes tools for workspace management, history, plotting, and plotting. You can publish and distribute data products throughout your organization. One-button deployment of Shiny applications and R Markdown reports, Jupyter Notebooks, etc. To increase reproducibility and reduce the time spent installing and troubleshooting R packages, you can control, organize, and manage your use of them. RStudio is committed to sustainable investment in open-source and free software for data science. RStudio has been certified as a B Corporation. This means that our open-source mission has been codified in our charter. Our professional software products are enterprise-ready and provide a modular platform that allows teams to adopt open-source data sciences at scale.
  • 3
    Domino Enterprise MLOps Platform Reviews
    The Domino Enterprise MLOps Platform helps data science teams improve the speed, quality, and impact of data science at scale. Domino is open and flexible, empowering professional data scientists to use their preferred tools and infrastructure. Data science models get into production fast and are kept operating at peak performance with integrated workflows. Domino also delivers the security, governance and compliance that enterprises expect. The Self-Service Infrastructure Portal makes data science teams become more productive with easy access to their preferred tools, scalable compute, and diverse data sets. By automating time-consuming and tedious DevOps tasks, data scientists can focus on the tasks at hand. The Integrated Model Factory includes a workbench, model and app deployment, and integrated monitoring to rapidly experiment, deploy the best models in production, ensure optimal performance, and collaborate across the end-to-end data science lifecycle. The System of Record has a powerful reproducibility engine, search and knowledge management, and integrated project management. Teams can easily find, reuse, reproduce, and build on any data science work to amplify innovation.
  • 4
    RapidMiner Reviews
    RapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have.
  • 5
    Deepnote Reviews
    Deepnote is building the best data science notebook for teams. Connect your data, explore and analyze it within the notebook with real-time collaboration and versioning. Share links to your projects with other analysts and data scientists on your team, or present your polished, published notebooks to end users and stakeholders. All of this is done through a powerful, browser-based UI that runs in the cloud.
  • 6
    Oracle Machine Learning Reviews
    Machine learning uncovers hidden patterns in enterprise data and generates new value for businesses. Oracle Machine Learning makes it easier to create and deploy machine learning models for data scientists by using AutoML technology and reducing data movement. It also simplifies deployment. Apache Zeppelin notebook technology, which is open-source-based, can increase developer productivity and decrease their learning curve. Notebooks are compatible with SQL, PL/SQL and Python. Users can also use markdown interpreters for Oracle Autonomous Database to create models in their preferred language. No-code user interface that supports AutoML on Autonomous Database. This will increase data scientist productivity as well as non-expert users' access to powerful in-database algorithms to classify and regression. Data scientists can deploy integrated models using the Oracle Machine Learning AutoML User Interface.
  • 7
    IBM SPSS Modeler Reviews
    IBM SPSS Modeler, a leading visual data-science and machine-learning (ML) solution, is designed to help enterprises accelerate their time to value through the automation of operational tasks by data scientists. It is used by organizations around the world for data preparation, discovery, predictive analytics and model management and deployment. ML is also used to monetize data assets. IBM SPSS Modeler transforms data in the best possible format for accurate predictive modeling. You can now analyze data in just a few clicks, identify fixes, screen fields out and derive new characteristics. IBM SPSS Modeler uses its powerful graphics engine to help you bring your insights to life. The smart chart recommender will select the best chart from dozens of options to share your insights.
  • 8
    Oracle Data Science Reviews
    Data science platform that increases productivity and has unparalleled capabilities. Create and evaluate machine learning (ML), models of higher quality. Easy deployment of ML models can help increase business flexibility and enable enterprise-trusted data work faster. Cloud-based platforms can be used to uncover new business insights. Iterative processes are necessary to build a machine-learning model. This ebook will explain how machine learning models are constructed and break down the process. Use notebooks to build and test machine learning algorithms. AutoML will show you the results of data science. It is easier and faster to create high-quality models. Automated machine-learning capabilities quickly analyze the data and recommend the best data features and algorithms. Automated machine learning also tunes the model and explains its results.
  • 9
    IBM Watson Studio Reviews
    You can build, run, and manage AI models and optimize decisions across any cloud. IBM Watson Studio allows you to deploy AI anywhere with IBM Cloud Pak®, the IBM data and AI platform. Open, flexible, multicloud architecture allows you to unite teams, simplify the AI lifecycle management, and accelerate time-to-value. ModelOps pipelines automate the AI lifecycle. AutoAI accelerates data science development. AutoAI allows you to create and programmatically build models. One-click integration allows you to deploy and run models. Promoting AI governance through fair and explicable AI. Optimizing decisions can improve business results. Open source frameworks such as PyTorch and TensorFlow can be used, as well as scikit-learn. You can combine the development tools, including popular IDEs and Jupyter notebooks. JupterLab and CLIs. This includes languages like Python, R, and Scala. IBM Watson Studio automates the management of the AI lifecycle to help you build and scale AI with trust.
  • 10
    IBM Cloud Pak for Data Reviews
    Unutilized data is the biggest obstacle to scaling AI-powered decision making. IBM Cloud Pak®, for Data is a unified platform that provides a data fabric to connect, access and move siloed data across multiple clouds or on premises. Automate policy enforcement and discovery to simplify access to data. A modern cloud data warehouse integrates to accelerate insights. All data can be protected with privacy and usage policy enforcement. To gain faster insights, use a modern, high-performance cloud storage data warehouse. Data scientists, analysts, and developers can use a single platform to create, deploy, and manage trusted AI models in any cloud.
  • 11
    JetBrains Datalore Reviews
    Datalore is a platform for collaborative data science and analytics that aims to improve the entire analytics workflow and make working with data more enjoyable for both data scientists as well as data-savvy business teams. Datalore is a collaborative platform that focuses on data teams workflow. It offers technical-savvy business users the opportunity to work with data teams using no-code and low-code, as well as the power of Jupyter Notebooks. Datalore allows business users to perform analytic self-service. They can work with data using SQL or no-code cells, create reports, and dive deep into data. It allows core data teams to focus on simpler tasks. Datalore allows data scientists and analysts to share their results with ML Engineers. You can share your code with ML Engineers on powerful CPUs and GPUs, and you can collaborate with your colleagues in real time.
  • 12
    Anaconda Reviews
    Top Pick
    A fully-featured machine learning platform empowers enterprises to conduct real data science at scale and speed. You can spend less time managing infrastructure and tools so that you can concentrate on building machine learning applications to propel your business forward. Anaconda Enterprise removes the hassle from ML operations and puts open-source innovation at the fingertips. It provides the foundation for serious machine learning and data science production without locking you into any specific models, templates, workflows, or models. AE allows data scientists and software developers to work together to create, test, debug and deploy models using their preferred languages. AE gives developers and data scientists access to both notebooks as well as IDEs, allowing them to work more efficiently together. They can also choose between preconfigured projects and example projects. AE projects can be easily moved from one environment to the next by being automatically packaged.
  • 13
    Zepl Reviews
    All work can be synced, searched and managed across your data science team. Zepl's powerful search allows you to discover and reuse models, code, and other data. Zepl's enterprise collaboration platform allows you to query data from Snowflake or Athena and then build your models in Python. For enhanced interactions with your data, use dynamic forms and pivoting. Zepl creates new containers every time you open your notebook. This ensures that you have the same image each time your models are run. You can invite your team members to join you in a shared space, and they will be able to work together in real-time. Or they can simply leave comments on a notebook. You can share your work with fine-grained access controls. You can allow others to read, edit, run, and share your work. This will facilitate collaboration and distribution. All notebooks can be saved and versioned automatically. An easy-to-use interface allows you to name, manage, roll back, and roll back all versions. You can also export seamlessly into Github.
  • 14
    TetraScience Reviews
    Accelerate scientific discovery, empower your R&D team and use harmonized data in cloud to accelerate your R&D. The Tetra R&D Data Cloud is the only cloud-native data platform for global pharmaceutical companies. It combines the power of the largest Life Sciences integrations network and deep domain knowledge to provide a future-proof solution to harness the power of your most important asset, R&D data. The cloud covers the entire life-cycle of your R&D data: from acquisition, harmonization, engineering, downstream analysis, and native support for state–of-the–art data science tools. Pre-built integrations allow for easy connection to instruments, informatics and analytics applications, ELN/LIMSs, CRO/CDMOs, and other vendors. Data acquisition, management, harmonization, integration/engineering and data science enablement in one single platform.
  • 15
    Appsilon Reviews
    Appsilon offers innovative data analytics, machine-learning, and managed services for Fortune 500 companies, NGOs and non-profit organizations. We offer the most advanced R Shiny applications in the world, and have the unique ability to quickly develop and scale enterprise Shiny dashboards. Our machine learning frameworks enable us to deliver prototypes for Computer Vision, NLP and fraud detection in as little as one working week. We are determined to make a positive difference in the world. Our AI For Good Initiative allows us to contribute our expertise to projects that help preserve human life and conserve animal populations around the world. Our team has been working to reduce poaching in Africa using computer vision, provide satellite imagery analysis to assess damage after natural catastrophes, and develop tools to aid with COVID-19 risk assessments. Appsilon is also an innovator in open-source.
  • 16
    UBIX Reviews
    Real-time business decisions that are ubiquitous without the need for expensive and specialized resources. UBIX is at the forefront of generative AI, reinforcement learning and business-led automation. Our patented SaaS platform contextualizes data from within and outside the enterprise and presents it in minutes, rather than days, ensuring AI innovation transformation. Improve daily decisions that have an impact on productivity, waste, compliance and profitability. The right data is delivered to the right business leaders at the right time and in the correct format. In just a few days and 5 simple steps, you can AI-enable any enterprise. Data scientists can be freed up to innovate instead of generating reports and improve business intelligence initiatives. Artificial intelligence is not just for large organizations or technical teams. It's available to all organizations. UBIX makes advanced analytics and artificial intelligence available to everyone.
  • 17
    PurpleCube Reviews
    Snowflake®, a cloud data platform and enterprise-grade architecture, allows you to securely store and use your data in the cloud. Drag-and-drop visual workflow design and built-in ETL to connect, clean and transform data from 250+ sources. You can generate actionable insights and insights from your data using the latest Search and AI-driven technology. Our AI/ML environments can be used to build, tune, and deploy models for predictive analytics or forecasting. Our AI/ML environments are available to help you take your data to new heights. The PurpleCube Data Science module allows you to create, train, tune, and deploy AI models for forecasting and predictive analysis. PurpleCube Analytics allows you to create BI visualizations, search your data with natural language and use AI-driven insights and smart recommendations to provide answers to questions that you didn't know to ask.
  • 18
    HPE Ezmeral Reviews

    HPE Ezmeral

    Hewlett Packard Enterprise

    Manage, control, secure, and manage the apps, data, and IT that run your business from edge to cloud. HPE Ezmeral accelerates digital transformation initiatives by shifting resources and time from IT operations to innovation. Modernize your apps. Simplify your operations. You can harness data to transform insights into impact. Kubernetes can be deployed at scale in your data center or on the edge. It integrates persistent data storage to allow app modernization on baremetal or VMs. This will accelerate time-to-value. Operationalizing the entire process to build data pipelines will allow you to harness data faster and gain insights. DevOps agility is key to machine learning's lifecycle. This will enable you to deliver a unified data network. Automation and advanced artificial intelligence can increase efficiency and agility in IT Ops. Provide security and control to reduce risk and lower costs. The HPE Ezmeral Container Platform is an enterprise-grade platform that deploys Kubernetes at large scale for a wide variety of uses.
  • 19
    Analance Reviews
    Combine Data Science, Business Intelligence and Data Management Capabilities into One Integrated, Self-Serve Platform. Analance is an end-to-end platform with robust and salable features that combines Data Science and Advanced Analytics, Business Intelligence and Data Management into a single integrated platform. It provides core analytical processing power to ensure that data insights are easily accessible to all, performance remains consistent over time, and business objectives can be met within a single platform. Analance focuses on making quality data into accurate predictions. It provides both citizen data scientists and data scientists with pre-built algorithms as well as an environment for custom programming. Company - Overview Ducen IT provides advanced analytics, business intelligence, and data management to Fortune 1000 companies through its unique data science platform Analance.
  • 20
    Cloudera Data Science Workbench Reviews
    Machine learning can be accelerated from research to production using a consistent experience that is built for your traditional platform. Cloudera Data Science Workbench, (CDSW), offers a self-service experience that data scientists will love. It allows you to access Python, R, Scala, and more directly from your web browser. You can download and test the latest frameworks and libraries in project environments that look exactly like your laptop. Cloudera Data Science Workbench allows you to connect to CDH and HDP as well as to the systems that your data science teams depend on for analysis. Cloudera Data Science Workbench allows data scientists to manage their own analytics pipelines. It includes built-in monitoring, scheduling, email alerting, and monitoring. Rapidly create and prototype machine learning projects, and then easily deploy them to production.
  • 21
    Darwin Reviews

    Darwin

    SparkCognition

    $4000
    Darwin is an automated machine-learning product that allows your data science and business analysis teams to quickly move from data to meaningful results. Darwin assists organizations in scaling the adoption of data science across their teams and the implementation machine learning applications across operations to become data-driven enterprises.
  • 22
    Metaflow Reviews
    Data scientists are able to build, improve, or operate end-to–end workflows independently. This allows them to deliver data science projects that are successful. Metaflow can be used with your favorite data science libraries such as SciKit Learn or Tensorflow. You can write your models in idiomatic Python codes with little to no learning. Metaflow also supports R language. Metaflow allows you to design your workflow, scale it, and then deploy it to production. It automatically tracks and versions all your data and experiments. It allows you to easily inspect the results in notebooks. Metaflow comes pre-installed with the tutorials so it's easy to get started. Metaflow allows you to make duplicates of all tutorials in your current directory by using the command line interface.
  • 23
    KNIME Analytics Platform Reviews
    Two complementary tools, one enterprise-grade platform. Open source KNIME Analytics Platform to create data science. Commercial KNIME Server to produce data science. KNIME Analytics Platform is an open-source software that creates data science. KNIME is intuitive, open, and constantly integrating new developments. It makes data science and designing data science workflows as easy as possible. KNIME Server Enterprise Software is used to facilitate team-based collaboration, automation, and management of data science workflows, as well as the deployment and management of analytical applications and services. Non-experts have access to KNIME WebPortal and REST APIs. Extensions for KNIME Analytics Platform allow you to do more with your data. Some are created and maintained by KNIME, while others are contributed by the community or our trusted partners. Integrations are also available with many open-source projects.
  • 24
    Incedo Lighthouse Reviews
    Platform for developing use-case specific solutions powered by cloud native AI powered Decision Automation platform. Incedo LighthouseTM harnesses AI's power in a low-code environment to deliver action recommendations and insights every day by leveraging the superfast Big Data capabilities. Incedo LighthouseTM allows you to increase your revenue potential by optimizing customer experiences, and delivering hyper-personalized recommendation. Our AI- and ML-driven models allow personalization throughout the customer lifecycle. Incedo LighthouseTM can help you reduce costs by speeding the process of problem discovery, insight generation, and execution of targeted actions. Our ML-driven metric monitoring and root cause analysis models power the platform. Incedo LighthouseTM monitors data quality and uses AI/ML to resolve some quality issues. This improves trust in data.
  • 25
    SAS Data Science Programming Reviews
    Analytically driven decision flows can be created, embedded and managed at scale in batch or real-time. SAS Data Science Programming allows data scientists who prefer to work only in programmatic mode to access SAS analytical capabilities at every stage of the analytics lifecycle, including data discovery and deployment. Visualize and discover relationships in your data. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes to make data-driven, smarter decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions. A comprehensive visual interface allows you to solve complex analytical problems. It handles all aspects of the analytics lifecycle.
  • 26
    Dataiku DSS Reviews
    Data analysts, engineers, scientists, and other scientists can be brought together. Automate self-service analytics and machine learning operations. Get results today, build for tomorrow. Dataiku DSS is a collaborative data science platform that allows data scientists, engineers, and data analysts to create, prototype, build, then deliver their data products more efficiently. Use notebooks (Python, R, Spark, Scala, Hive, etc.) You can also use a drag-and-drop visual interface or Python, R, Spark, Scala, Hive notebooks at every step of the predictive dataflow prototyping procedure - from wrangling to analysis and modeling. Visually profile the data at each stage of the analysis. Interactively explore your data and chart it using 25+ built in charts. Use 80+ built-in functions to prepare, enrich, blend, clean, and clean your data. Make use of Machine Learning technologies such as Scikit-Learn (MLlib), TensorFlow and Keras. In a visual UI. You can build and optimize models in Python or R, and integrate any external library of ML through code APIs.
  • 27
    HyperCube Reviews
    HyperCube is the platform that data scientists use to quickly discover hidden insights, no matter what your business needs. Use your business data to make an impact. Unlock understanding, uncover untapped opportunities, make predictions, and avoid risk before they happen. HyperCube turns huge amounts of data into actionable insights. HyperCube is for you, whether you are a beginner or an expert in machine learning. It is the data science Swiss Army knife. It combines proprietary and open-source code to deliver a wide variety of data analysis features right out of the box. Or, it can be customized for your business. We are constantly improving our technology to deliver the best possible results. Choose from apps, DaaS (data-as-a service) or vertical market solutions.
  • 28
    Solvuu Reviews
    A data science platform for life scientists. Transform your microbiome research into useful applications Get new, safe and effective products on the market faster. Combine the right combination of data science and collaboration tools to make rapid progress in cancer therapy. Effective digital technology solutions can improve crop productivity and accelerate research. Import both small and large data. You can either use our templates or create your own schema. Our format inference algorithm synthesizes the parsing functions and allows you to override if necessary, without any coding. For bulk imports, you can use our interactive import screens and CLI. Your data is more than just bits. Solvuu automatically calculates summary statistics and generates rich interactive visualizations. You can explore and gain insight into your data instantly; you can even slice and dice it as needed.
  • 29
    Zerve AI Reviews
    With a fully automated cloud infrastructure, experts can explore data and write stable codes at the same time. Zerve’s data science environment gives data scientists and ML teams a unified workspace to explore, collaborate and build data science & AI project like never before. Zerve provides true language interoperability. Users can use Python, R SQL or Markdown in the same canvas and connect these code blocks. Zerve offers unlimited parallelization, allowing for code blocks and containers to run in parallel at any stage of development. Analysis artifacts can be automatically serialized, stored and preserved. This allows you to change a step without having to rerun previous steps. Selecting compute resources and memory in a fine-grained manner for complex data transformation.
  • 30
    SAS Visual Data Science Reviews
    Access, explore, and prepare data while discovering new patterns and trends. SAS Visual Data Science allows you to create and share interactive visualizations and reports using a single interface. It uses machine learning, text analysis, and econometrics to improve forecasting and optimization. Additionally, it registers SAS and open source models within projects and as standalone models. Visualize your data and find relevant relationships. You can create and share interactive dashboards and reports, and use self service analytics to quickly assess possible outcomes for better, data-driven decisions. This solution runs in SAS®, Viya®. It allows you to explore data and create or adjust predictive analytical models. Analysts, statisticians, data scientists, and analysts can work together to refine and refine models for each group or segment, allowing them to make informed decisions.
  • 31
    Azure Data Science Virtual Machines Reviews
    DSVMs are Azure Virtual Machine Images that have been pre-configured, configured, and tested with many popular tools that are used for data analytics and machine learning. A consistent setup across the team promotes collaboration, Azure scale, management, Near-Zero Setup and full cloud-based desktop to support data science. For one to three classroom scenarios or online courses, it is easy and quick to set up. Analytics can be run on all Azure hardware configurations, with both vertical and horizontal scaling. Only pay for what you use and when you use it. Pre-configured Deep Learning tools are readily available in GPU clusters. To make it easy to get started with the various tools and capabilities, such as Neural Networks (PYTorch and Tensorflow), templates and examples are available on the VMs. ), Data Wrangling (R, Python, Julia and SQL Server).
  • 32
    NVIDIA Merlin Reviews
    NVIDIA Merlin enables data scientists, machine-learning engineers, and researchers, to build high-performance recommenders at scale. Merlin includes libraries, methods and tools to streamline the building and deployment of recommenders. These include addressing common challenges in preprocessing, feature engineering and training. Merlin components and capabilities have been optimized to support retrieval, scoring, filtering and ordering of hundreds terabytes data. All of this is accessible via easy-to-use interfaces. Merlin can help you make better predictions, increase click-through rates and deploy faster to production. NVIDIA Merlin is part of NVIDIA AI and advances our commitment to support innovative practitioners doing their best. NVIDIA Merlin is designed as an end-toend solution that can be integrated into existing recommender workflows utilizing data science and machine learning.
  • 33
    SAS Visual Statistics Reviews
    SAS Visual Statistics allows multiple users to interactively explore data and then create and refine predictive models. Your statisticians and data scientists can use the most appropriate analytical modeling techniques to analyze your observations at a fine level. What will you get? The result? You can quickly build and refine models to target specific segments or groups, and run multiple scenarios simultaneously. To get better results, you can ask more "what-if" questions. You can also use an automatically generated score code to put your results into practice. Multiple users can interact with data visually. They can add, change, or remove outliers. You can instantly see how changes affect the predictive power of your model and make adjustments quickly. Data science teams have the freedom to work in the language they prefer, so they can make the most of their talents. SAS Visual Statistics combines all analytical assets.
  • 34
    FutureAnalytica Reviews
    Our platform is the only one that offers an end-to–end platform for AI-powered innovation. It can handle everything from data cleansing and structuring to creating and deploying advanced data-science models to infusing advanced analytics algorithms, to infusing Recommendation AI, to deducing outcomes with simple-to-deduce visualization dashboards as well as Explainable AI to track how the outcomes were calculated. Our platform provides a seamless, holistic data science experience. FutureAnalytica offers key features such as a robust Data Lakehouse and an AI Studio. There is also a comprehensive AI Marketplace. You can also get support from a world-class team of data-science experts (on a case-by-case basis). FutureAnalytica will help you save time, effort, and money on your data-science and AI journey. Start discussions with the leadership and then a quick technology assessment within 1-3 days. In 10-18 days, you can create ready-to-integrate AI solutions with FA's fully-automated data science & AI platform.
  • 35
    IBM Analytics for Apache Spark Reviews
    IBM Analytics for Apache Spark allows data scientists to ask more difficult questions and deliver business value quicker with a flexible, integrated Spark service. It's a simple-to-use, managed service that is always on and doesn't require any long-term commitment. You can start exploring immediately. You can access the power of Apache Spark without locking yourself in, thanks to IBM's open-source commitment as well as decades of enterprise experience. With Notebooks as a connector, coding and analytics are faster and easier with managed Spark services. This allows you to spend more time on innovation and delivery. You can access the power of machine learning libraries through managed Apache Spark services without having to manage a Sparkcluster by yourself.
  • 36
    MLJAR Studio Reviews
    Installed with one click, it's a desktop application that includes Jupyter Notebook. It has interactive code snippets, an AI assistant and a coding speed-up tool. Over 100 interactive code recipes have been handcrafted by us and can be used in Data Science projects. Code recipes detect the packages that are available in the current environment. Install modules with a single click. You can create variables and interact with them in your Python session. Interactive recipes speed-up your work. AI Assistant can access your current Python session and variables. It is smarter because it has a broad context. Our AI Assistant is designed to solve data issues using Python programming language. It can assist you with plots and data loading, data wrangling and Machine Learning. Click the Fix button to use AI to quickly fix code issues. The AI assistant will analyze and suggest a solution to the error.
  • 37
    Stata Reviews

    Stata

    StataCorp

    $48.00/6-month/student
    Stata is a comprehensive, integrated software package that can handle all aspects of data science: data manipulation, visualization and statistics, as well as automated reporting. Stata is quick and accurate. The extensive graphical interface makes it easy to use, but is also fully programable. Stata's menus, dialogs and buttons give you the best of both worlds. All Stata's data management, statistical, and graphical features are easy to access by dragging and dropping or point-and-click. To quickly execute commands, you can use Stata's intuitive command syntax. You can log all actions and results, regardless of whether you use the menus or dialogs. This will ensure reproducibility and integrity in your analysis. Stata also offers complete command-line programming and programming capabilities, including a full matrix language. All the commands that Stata ships with are available to you, whether you want to create new Stata commands or script your analysis.
  • 38
    MATLAB Reviews
    Top Pick
    MATLAB®, a combination of a desktop environment for iterative analysis, design processes, and a programming language that expresses matrix or array mathematics directly, is MATLAB®. It also includes the Live Editor, which allows you to create scripts that combine output, code, and formatted text in an executable notebook. MATLAB toolboxes have been professionally developed, tested and documented. MATLAB apps allow you to see how different algorithms interact with your data. You can repeat the process until you get the results you desire. Then, MATLAB will automatically generate a program to replicate or automate your work. With minor code changes, you can scale your analyses to run on GPUs, clusters, and clouds. You don't need to rewrite any code or learn big-data programming and other out-of-memory methods. Convert MATLAB algorithms automatically to C/C++ and HDL to run on your embedded processor/FPGA/ASIC. Simulink works with MATLAB to support Model-Based Design.
  • 39
    Shapelets Reviews
    Powerful computing at your fingertips. Parallel computing and innovative algorithms are available. What are you waiting for?! This tool is designed to empower data scientists in the business. You can get the fastest computing through an all-inclusive platform that covers time-series. Shapelets offers analytical features such as forecasting, clustering and motif discovery, discords, and causality. To make Big Data analysis more efficient, you can run, extend, and integrate your own algorithms in the Shapelets platform. Shapelets can be integrated seamlessly with any data storage and collection solution. It can also be integrated with MS Office and any other visualization software to simplify and share your insights without needing any technical knowledge. Interactive visualizations are possible because our UI integrates with the server. Our modern interface allows you to make the most out of your metadata and present it in the various visual graphs available. Shapelets allows users in the oil, gas, or energy industry to analyze operational data in real-time.
  • 40
    doolytic Reviews
    Doolytic is a leader in big data discovery, the convergence data discovery, advanced analytics and big data. Doolytic is bringing together BI experts to revolutionize self-service exploration of large data. This will unleash the data scientist in everyone. doolytic is an enterprise solution for native big data discovery. doolytic is built on open-source, scalable technologies that are best-of-breed. Lightening performance on billions and petabytes. Structured, unstructured, and real-time data from all sources. Advanced query capabilities for experts, Integration with R to enable advanced and predictive applications. With Elastic's flexibility, you can search, analyze, and visualize data in real-time from any format or source. You can harness the power of Hadoop data lakes without any latency or concurrency issues. doolytic solves common BI issues and enables big data discovery without clumsy or inefficient workarounds.
  • 41
    Peak Reviews
    A new decision intelligence system that puts AI in the hands commercial leaders to drive great decisions. Peak has designed CODI, our Connected Intelligence system to be a layer of intelligence between your systems. This allows you to unleash the power of your data, allowing you to make better decisions. CODI allows you to deploy AI solutions quickly and harness the full potential of your data with its unique full-stack capabilities. It gives data science and engineering teams full control over every aspect of building and deploying AI systems, quickly and efficiently. CODI allows AI projects to move beyond being experiments and become fully-deployed solutions with real world value and results. CODI, which is built on enterprise-grade infrastructure allows for data to be handled at scale and seamlessly integrates with existing tech stacks. Combine data from different departments to get more insight.
  • 42
    Record Evolution Reviews
    Accelerate and simplify IoT data extraction, create AI for the shop floor, and visualize KPIs. Manage decentralized, compact data pods. Each data pod is completely autonomous and includes infrastructure for powerful analytics. Flexible storage capacity allows you to create multiple pods with different sizes. In a seamless data journey, you can collect, analyze, visualize, and visualize data. You can collect raw data from multiple sources, such as IoT routers or the web. Instantly generate reports and create custom infographics from your browser. Combine the power of VS Code, Observable and TablePlus to create interactive data science workbooks. You can see the current and past processes in real time and automate package loads up to reporting.
  • 43
    Visplore Reviews
    Visplore makes the analysis of large, dirty time series data intuitive and extremely efficient. For process experts, R&D engineers, quality managers, industry consultants, and everyone who has spent a lot of time on the tedious preparation of complex measurement data. Knowing your data is the fundament of unlocking its value. Visplore offers ready-to-use tools to understand correlations, patterns, trends and much more, faster than ever. Cleansing and annotating make the difference between valuable and useless data. In Visplore, you deal with dirty data like outliers, anomalies and process changes as easily as using a drawing program. Integrations with Python, R, Matlab and many other sources makes workflow integration straightforward. And all of that at a performance that is still fun even with millions of data records, and allows for unexpectedly creative analyses.
  • 44
    Oracle Cloud Infrastructure Data Integration Reviews
    Easy extract, transform, load (ETL), data for data science or analytics. Code-free data flows can be created into data lakes or data marts. Oracle's extensive portfolio of integration solutions. The intuitive user interface allows you to set up integration parameters and automate data mapping from sources and targets. To shape your data, you can use one of the many out-of-the box operators such as a join or aggregate. You can centrally manage your processes and use parameters to override certain configuration values at runtime. Users can view and interact with their data to validate their processes. You can increase productivity and fine-tune data flow on the fly without waiting for executions to complete. Reduce maintenance complexity and avoid broken integration flows as data schemas change.
  • 45
    Kedro Reviews
    Kedro provides the foundation for clean, data-driven code. It applies concepts from software engineering to machine-learning projects. Kedro projects provide scaffolding for complex machine-learning and data pipelines. Spend less time on "plumbing", and instead focus on solving new problems. Kedro standardizes the way data science code is written and ensures that teams can collaborate easily to solve problems. You can make a seamless transition between development and production by using exploratory code. This code can be converted into reproducible, maintainable and modular experiments. A series of lightweight connectors are used to save and upload data across a variety of file formats and file systems.
  • 46
    Kuzzle Reviews
    Kuzzle IoT Platform: Activate online without any commitment. Kuzzle is an open-source software company that publishes software for managing data, APIs, and the Internet of Things. Kuzzle solutions, developed by French engineers and conceived by them, accelerate the deployment of applications by using an open-source standard. Our teams are available to support you with your IoT project. Connect and manage your area while offering smart services to your users. Kuzzle IoT can help you create an urban hyper vision to manage public lighting, waste, voluntary drop-offs, water, public buildings and parking. Kuzzle IoT works with all IoT devices and sensor technologies. We offer ready-to-use IoT functionality for all your needs, including asset tracking, geolocation, and geofencing. Simplify your IoT application deployment. Online, you can activate the power of Kuzzle IoT without any commitment.
  • 47
    dotData Reviews
    DotData allows your business to concentrate on the results of your AI/ML applications and not the hassles of the data science process. Automate full-cycle AI & ML pipeline deployment in minutes. Continuous deployment allows you to update your data in real-time. Feature engineering automation reduces the time it takes to complete data science projects. Data science automation automates the discovery of unknowns in your business. Data science automation is a labor-intensive and cumbersome process that uses data science to create and deploy machine learning and AI models. Automate repetitive and time-consuming tasks that are the banes of data science work. This will reduce the development times for AI from months to days.
  • 48
    Wolfram Data Science Platform Reviews
    Wolfram Data Science Platform allows you to use structured and unstructured data sources, as well as real-time or static data. Alpha to convert unstructured data to structured form, with automated or guided destructuring and disambiguation. Wolfram Data Science Platform uses industry-specific database connection technology to transform database content into its highly flexible internal symbol representation. Wolfram Data Science Platform is capable of reading hundreds of data formats and converting them. Wolfram Data Science Platform can work with images, text and networks as well as sounds, GIS data, and many other formats. Wolfram Data Science Platform seamlessly handles both SQL-style data and NoSQL data thanks to the Wolfram Language's breakthrough symbolic data representation. Wolfram Data Science Platform automatically creates an interactive report using algorithms that identify interesting features in your data to highlight and visualize.
  • 49
    ZinkML Reviews
    ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions.
  • 50
    Outerbounds Reviews
    With open-source Metaflow, you can design and develop data-intensive projects. You can scale them up and deploy them on the fully managed Outerbounds platform. All your data science and ML projects can be managed from one platform. Access data securely from existing data warehouses. A cluster that is optimized for cost and scale can be used to compute. 24/7 managed orchestration of production workflows. Results can be used to power any application. Your engineers will give your data scientists superpowers. Outerbounds Platform enables data scientists to quickly develop, experiment at scale, then deploy to production with confidence. All within the boundaries of your engineers' policies and processes, all running on your cloud account, fully supported by us. Security is part of our DNA, not at its perimeter. Through multiple layers of security, the platform adapts to your policies. Centralized authentication, a strict permission limit, and granular task execution role.