RunPod
RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
Learn more
LeanData
LeanData’s no-code Go-to-Market Execution platform helps leading B2B companies make smarter decisions and drive stronger revenue outcomes. By unifying data, tools, and teams, LeanData empowers organizations like Nvidia, Cisco, and Palo Alto Networks to streamline operations, accelerate pipeline, and deliver better customer experiences — from first signal to closed-won.
Learn more
NVIDIA NeMo Retriever
NVIDIA NeMo Retriever is a suite of microservices designed for creating high-accuracy multimodal extraction, reranking, and embedding workflows while ensuring maximum data privacy. It enables rapid, contextually relevant responses for AI applications, including sophisticated retrieval-augmented generation (RAG) and agentic AI processes. Integrated within the NVIDIA NeMo ecosystem and utilizing NVIDIA NIM, NeMo Retriever empowers developers to seamlessly employ these microservices, connecting AI applications to extensive enterprise datasets regardless of their location, while also allowing for tailored adjustments to meet particular needs. This toolset includes essential components for constructing data extraction and information retrieval pipelines, adeptly extracting both structured and unstructured data, such as text, charts, and tables, transforming it into text format, and effectively removing duplicates. Furthermore, a NeMo Retriever embedding NIM processes these data segments into embeddings and stores them in a highly efficient vector database, optimized by NVIDIA cuVS to ensure faster performance and indexing capabilities, ultimately enhancing the overall user experience and operational efficiency. This comprehensive approach allows organizations to harness the full potential of their data while maintaining a strong focus on privacy and precision.
Learn more
NVIDIA Confidential Computing
NVIDIA Confidential Computing safeguards data while it is actively being processed, ensuring the protection of AI models and workloads during execution by utilizing hardware-based trusted execution environments integrated within the NVIDIA Hopper and Blackwell architectures, as well as compatible platforms. This innovative solution allows businesses to implement AI training and inference seamlessly, whether on-site, in the cloud, or at edge locations, without requiring modifications to the model code, all while maintaining the confidentiality and integrity of both their data and models. Among its notable features are the zero-trust isolation that keeps workloads separate from the host operating system or hypervisor, device attestation that confirms only authorized NVIDIA hardware is executing the code, and comprehensive compatibility with shared or remote infrastructures, catering to ISVs, enterprises, and multi-tenant setups. By protecting sensitive AI models, inputs, weights, and inference processes, NVIDIA Confidential Computing facilitates the execution of high-performance AI applications without sacrificing security or efficiency. This capability empowers organizations to innovate confidently, knowing their proprietary information remains secure throughout the entire operational lifecycle.
Learn more