Windsurf Editor
Windsurf is a cutting-edge IDE designed for developers to maintain focus and productivity through AI-driven assistance. At the heart of the platform is Cascade, an intelligent agent that not only fixes bugs and errors but also anticipates potential issues before they arise. With built-in features for real-time code previews, automatic linting, and seamless integrations with popular tools like GitHub and Slack, Windsurf streamlines the development process. Developers can also benefit from memory tracking, which helps Cascade recall past work, and smart suggestions that enhance code optimization. Windsurf’s unique capabilities ensure that developers can work faster and smarter, reducing onboarding time and accelerating project delivery.
Learn more
Resco Field Service+
Resco Field Service+ empowers field service teams by transforming traditional service processes into streamlined digital workflows. Built to enhance operations in industries like utilities, telecommunications, manufacturing, and energy, Field Service+ combines offline functionality with advanced scheduling, routing, and data capture tools to keep teams productive in any environment.
With seamless integration into Dynamics 365 and Salesforce, Resco Field Service+ enables real-time data access and updates from the field, reducing manual entry and eliminating paper-based records. Field technicians can use their mobile devices to capture photos, scan barcodes, complete checklists, and access service history—even offline, which is critical for remote or high-traffic areas.
Features include drag-and-drop customization, allowing teams to create workflows, forms, and reports without coding. Its GPS and routing capabilities help technicians optimize their routes, and with real-time insights, supervisors can monitor job status and resource allocation on the go.
Resco Field Service+ makes managing field operations efficient and reliable, helping organizations improve response times, reduce errors, and enhance customer satisfaction.
Learn more
Google AI Edge
Google AI Edge presents an extensive range of tools and frameworks aimed at simplifying the integration of artificial intelligence into mobile, web, and embedded applications. By facilitating on-device processing, it minimizes latency, supports offline capabilities, and keeps data secure and local. Its cross-platform compatibility ensures that the same AI model can operate smoothly across various embedded systems. Additionally, it boasts multi-framework support, accommodating models developed in JAX, Keras, PyTorch, and TensorFlow. Essential features include low-code APIs through MediaPipe for standard AI tasks, which enable rapid incorporation of generative AI, as well as functionalities for vision, text, and audio processing. Users can visualize their model's evolution through conversion and quantification processes, while also overlaying results to diagnose performance issues. The platform encourages exploration, debugging, and comparison of models in a visual format, allowing for easier identification of critical hotspots. Furthermore, it enables users to view both comparative and numerical performance metrics, enhancing the debugging process and improving overall model optimization. This powerful combination of features positions Google AI Edge as a pivotal resource for developers aiming to leverage AI in their applications.
Learn more
Keepsake
Keepsake is a Python library that is open-source and specifically designed for managing version control in machine learning experiments and models. It allows users to automatically monitor various aspects such as code, hyperparameters, training datasets, model weights, performance metrics, and Python dependencies, ensuring comprehensive documentation and reproducibility of the entire machine learning process. By requiring only minimal code changes, Keepsake easily integrates into existing workflows, permitting users to maintain their usual training routines while it automatically archives code and model weights to storage solutions like Amazon S3 or Google Cloud Storage. This capability simplifies the process of retrieving code and weights from previous checkpoints, which is beneficial for re-training or deploying models. Furthermore, Keepsake is compatible with a range of machine learning frameworks, including TensorFlow, PyTorch, scikit-learn, and XGBoost, enabling efficient saving of files and dictionaries. In addition to these features, it provides tools for experiment comparison, allowing users to assess variations in parameters, metrics, and dependencies across different experiments, enhancing the overall analysis and optimization of machine learning projects. Overall, Keepsake streamlines the experimentation process, making it easier for practitioners to manage and evolve their machine learning workflows effectively.
Learn more