Best Tinker Alternatives in 2026
Find the top alternatives to Tinker currently available. Compare ratings, reviews, pricing, and features of Tinker alternatives in 2026. Slashdot lists the best Tinker alternatives on the market that offer competing products that are similar to Tinker. Sort through Tinker alternatives below to make the best choice for your needs
-
1
Vertex AI
Google
827 RatingsFully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case. Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection. Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex. -
2
Amazon Nova Forge
Amazon
1 RatingAmazon Nova Forge gives enterprises unprecedented control to build highly specialized frontier models using Nova’s early checkpoints and curated training foundations. By blending proprietary data with Amazon’s trusted datasets, organizations can shape models with deep domain understanding and long-term adaptability. The platform covers every phase of development, enabling teams to start with continued pre-training, refine capabilities with supervised fine-tuning, and optimize performance with reinforcement learning in their own environments. Nova Forge also includes built-in responsible AI guardrails that help ensure safer deployments across industries like pharmaceuticals, finance, and manufacturing. Its seamless integration with SageMaker AI makes setup, training, and hosting effortless, even for companies managing large-scale model development. Customer testimonials highlight dramatic improvements in accuracy, latency, and workflow consolidation, often outperforming larger general-purpose models. With early access to new Nova architectures, teams can stay ahead of the frontier without maintaining expensive infrastructure. Nova Forge ultimately gives organizations a practical, fast, and scalable way to create powerful AI tailored to their unique needs. -
3
Amazon SageMaker HyperPod
Amazon
Amazon SageMaker HyperPod is a specialized and robust computing infrastructure designed to streamline and speed up the creation of extensive AI and machine learning models by managing distributed training, fine-tuning, and inference across numerous clusters equipped with hundreds or thousands of accelerators, such as GPUs and AWS Trainium chips. By alleviating the burdens associated with developing and overseeing machine learning infrastructure, it provides persistent clusters capable of automatically identifying and rectifying hardware malfunctions, resuming workloads seamlessly, and optimizing checkpointing to minimize the risk of interruptions — thus facilitating uninterrupted training sessions that can last for months. Furthermore, HyperPod features centralized resource governance, allowing administrators to establish priorities, quotas, and task-preemption rules to ensure that computing resources are allocated effectively among various tasks and teams, which maximizes utilization and decreases idle time. It also includes support for “recipes” and pre-configured settings, enabling rapid fine-tuning or customization of foundational models, such as Llama. This innovative infrastructure not only enhances efficiency but also empowers data scientists to focus more on developing their models rather than managing the underlying technology. -
4
Nebius Token Factory
Nebius
$0.02Nebius Token Factory is an advanced AI inference platform that enables the production of both open-source and proprietary AI models without the need for manual infrastructure oversight. It provides enterprise-level inference endpoints that ensure consistent performance, automatic scaling of throughput, and quick response times, even when faced with high request traffic. With a remarkable 99.9% uptime, it accommodates both unlimited and customized traffic patterns according to specific workload requirements, facilitating a seamless shift from testing to worldwide implementation. Supporting a diverse array of open-source models, including Llama, Qwen, DeepSeek, GPT-OSS, Flux, and many more, Nebius Token Factory allows teams to host and refine models via an intuitive API or dashboard interface. Users have the flexibility to upload LoRA adapters or fully fine-tuned versions directly, while still benefiting from the same enterprise-grade performance assurances for their custom models. This level of support ensures that organizations can confidently leverage AI technology to meet their evolving needs. -
5
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
6
Axolotl
Axolotl
FreeAxolotl is an innovative open-source tool crafted to enhance the fine-tuning process of a variety of AI models, accommodating numerous configurations and architectures. This platform empowers users to train models using diverse methods such as full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Additionally, users have the flexibility to customize their configurations through straightforward YAML files or by employing command-line interface overrides, while also being able to load datasets in various formats, whether custom or pre-tokenized. Axolotl seamlessly integrates with cutting-edge technologies, including xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and it is capable of operating on single or multiple GPUs using Fully Sharded Data Parallel (FSDP) or DeepSpeed. Whether run locally or in the cloud via Docker, it offers robust support for logging results and saving checkpoints to multiple platforms, ensuring users can easily track their progress. Ultimately, Axolotl aims to make the fine-tuning of AI models not only efficient but also enjoyable, all while maintaining a high level of functionality and scalability. With its user-friendly design, it invites both novices and experienced practitioners to explore the depths of AI model training. -
7
LLaMA-Factory
hoshi-hiyouga
FreeLLaMA-Factory is an innovative open-source platform aimed at simplifying and improving the fine-tuning process for more than 100 Large Language Models (LLMs) and Vision-Language Models (VLMs). It accommodates a variety of fine-tuning methods such as Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA), and Prefix-Tuning, empowering users to personalize models with ease. The platform has shown remarkable performance enhancements; for example, its LoRA tuning achieves training speeds that are up to 3.7 times faster along with superior Rouge scores in advertising text generation tasks when compared to conventional techniques. Built with flexibility in mind, LLaMA-Factory's architecture supports an extensive array of model types and configurations. Users can seamlessly integrate their datasets and make use of the platform’s tools for optimized fine-tuning outcomes. Comprehensive documentation and a variety of examples are available to guide users through the fine-tuning process with confidence. Additionally, this platform encourages collaboration and sharing of techniques among the community, fostering an environment of continuous improvement and innovation. -
8
kluster.ai
kluster.ai
$0.15per inputKluster.ai is an AI cloud platform tailored for developers, enabling quick deployment, scaling, and fine-tuning of large language models (LLMs) with remarkable efficiency. Crafted by developers with a focus on developer needs, it features Adaptive Inference, a versatile service that dynamically adjusts to varying workload demands, guaranteeing optimal processing performance and reliable turnaround times. This Adaptive Inference service includes three unique processing modes: real-time inference for tasks requiring minimal latency, asynchronous inference for budget-friendly management of tasks with flexible timing, and batch inference for the streamlined processing of large volumes of data. It accommodates an array of innovative multimodal models for various applications such as chat, vision, and coding, featuring models like Meta's Llama 4 Maverick and Scout, Qwen3-235B-A22B, DeepSeek-R1, and Gemma 3. Additionally, Kluster.ai provides an OpenAI-compatible API, simplifying the integration of these advanced models into developers' applications, and thereby enhancing their overall capabilities. This platform ultimately empowers developers to harness the full potential of AI technologies in their projects. -
9
Helix AI
Helix AI
$20 per monthDevelop and enhance AI for text and images tailored to your specific requirements by training, fine-tuning, and generating content from your own datasets. We leverage top-tier open-source models for both image and language generation, and with LoRA fine-tuning, these models can be trained within minutes. You have the option to share your session via a link or create your own bot for added functionality. Additionally, you can deploy your solution on entirely private infrastructure if desired. By signing up for a free account today, you can immediately start interacting with open-source language models and generate images using Stable Diffusion XL. Fine-tuning your model with your personal text or image data is straightforward, requiring just a simple drag-and-drop feature and taking only 3 to 10 minutes. Once fine-tuned, you can engage with and produce images from these customized models instantly, all within a user-friendly chat interface. The possibilities for creativity and innovation are endless with this powerful tool at your disposal. -
10
Intel Tiber AI Cloud
Intel
FreeThe Intel® Tiber™ AI Cloud serves as a robust platform tailored to efficiently scale artificial intelligence workloads through cutting-edge computing capabilities. Featuring specialized AI hardware, including the Intel Gaudi AI Processor and Max Series GPUs, it enhances the processes of model training, inference, and deployment. Aimed at enterprise-level applications, this cloud offering allows developers to create and refine models using well-known libraries such as PyTorch. Additionally, with a variety of deployment choices, secure private cloud options, and dedicated expert assistance, Intel Tiber™ guarantees smooth integration and rapid deployment while boosting model performance significantly. This comprehensive solution is ideal for organizations looking to harness the full potential of AI technologies. -
11
OpenPipe
OpenPipe
$1.20 per 1M tokensOpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features. -
12
Evoke
Evoke
$0.0017 per compute secondConcentrate on development while we manage the hosting aspect for you. Simply integrate our REST API, and experience a hassle-free environment with no restrictions. We possess the necessary inferencing capabilities to meet your demands. Eliminate unnecessary expenses as we only bill based on your actual usage. Our support team also acts as our technical team, ensuring direct assistance without the need for navigating complicated processes. Our adaptable infrastructure is designed to grow alongside your needs and effectively manage any sudden increases in activity. Generate images and artworks seamlessly from text to image or image to image with comprehensive documentation provided by our stable diffusion API. Additionally, you can modify the output's artistic style using various models such as MJ v4, Anything v3, Analog, Redshift, and more. Versions of stable diffusion like 2.0+ will also be available. You can even train your own stable diffusion model through fine-tuning and launch it on Evoke as an API. Looking ahead, we aim to incorporate other models like Whisper, Yolo, GPT-J, GPT-NEOX, and a host of others not just for inference but also for training and deployment, expanding the creative possibilities for users. With these advancements, your projects can reach new heights in efficiency and versatility. -
13
Unsloth
Unsloth
FreeUnsloth is an innovative open-source platform specifically crafted to enhance and expedite the fine-tuning and training process of Large Language Models (LLMs). This platform empowers users to develop customized models, such as ChatGPT, in just a single day, a remarkable reduction from the usual training time of 30 days, achieving speeds that can be up to 30 times faster than Flash Attention 2 (FA2) while significantly utilizing 90% less memory. It supports advanced fine-tuning methods like LoRA and QLoRA, facilitating effective customization for models including Mistral, Gemma, and Llama across its various versions. The impressive efficiency of Unsloth arises from the meticulous derivation of computationally demanding mathematical processes and the hand-coding of GPU kernels, which leads to substantial performance enhancements without necessitating any hardware upgrades. On a single GPU, Unsloth provides a tenfold increase in processing speed and can achieve up to 32 times improvement on multi-GPU setups compared to FA2, with its functionality extending to a range of NVIDIA GPUs from Tesla T4 to H100, while also being portable to AMD and Intel graphics cards. This versatility ensures that a wide array of users can take full advantage of Unsloth's capabilities, making it a compelling choice for those looking to push the boundaries of model training efficiency. -
14
FinetuneFast
FinetuneFast
FinetuneFast is the go-to platform for rapidly finetuning AI models and deploying them effortlessly, allowing you to start generating income online without complications. Its standout features include the ability to finetune machine learning models in just a few days rather than several weeks, along with an advanced ML boilerplate designed for applications ranging from text-to-image generation to large language models and beyond. You can quickly construct your first AI application and begin earning online, thanks to pre-configured training scripts that enhance the model training process. The platform also offers efficient data loading pipelines to ensure smooth data processing, along with tools for hyperparameter optimization that significantly boost model performance. With multi-GPU support readily available, you'll experience enhanced processing capabilities, while the no-code AI model finetuning option allows for effortless customization. Deployment is made simple with a one-click process, ensuring that you can launch your models swiftly and without hassle. Moreover, FinetuneFast features auto-scaling infrastructure that adjusts seamlessly as your models expand, API endpoint generation for straightforward integration with various systems, and a comprehensive monitoring and logging setup for tracking real-time performance. In this way, FinetuneFast not only simplifies the technical aspects of AI development but also empowers you to focus on monetizing your creations efficiently. -
15
Riku
Riku
$29 per monthFine-tuning involves utilizing a dataset to develop a model compatible with AI applications. Achieving this can be challenging without programming skills, which is why we've integrated a straightforward solution into RIku that simplifies the entire process. By leveraging fine-tuning, you can tap into an enhanced level of AI capabilities, and we are thrilled to support you in this journey. Additionally, Public Share Links serve as unique landing pages that can be created for any prompts you design. These pages can be customized to reflect your brand identity, featuring your choice of colors, logo, and personalized welcome messages. You can share these links publicly, allowing others to access them and generate content if they possess the necessary password. This feature acts as a micro-scale, no-code writing assistant tailored for your audience! One notable challenge we've encountered in projects utilizing various large language models is the subtle variations in their output, which can sometimes lead to inconsistencies. By addressing these discrepancies, we aim to streamline the user experience and enhance the coherence of generated content. -
16
Phi-4-reasoning
Microsoft
Phi-4-reasoning is an advanced transformer model featuring 14 billion parameters, specifically tailored for tackling intricate reasoning challenges, including mathematics, programming, algorithm development, and strategic planning. Through a meticulous process of supervised fine-tuning on select "teachable" prompts and reasoning examples created using o3-mini, it excels at generating thorough reasoning sequences that optimize computational resources during inference. By integrating outcome-driven reinforcement learning, Phi-4-reasoning is capable of producing extended reasoning paths. Its performance notably surpasses that of significantly larger open-weight models like DeepSeek-R1-Distill-Llama-70B and nears the capabilities of the comprehensive DeepSeek-R1 model across various reasoning applications. Designed for use in settings with limited computing power or high latency, Phi-4-reasoning is fine-tuned with synthetic data provided by DeepSeek-R1, ensuring it delivers precise and methodical problem-solving. This model's ability to handle complex tasks with efficiency makes it a valuable tool in numerous computational contexts. -
17
Qwen2.5-Max
Alibaba
FreeQwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology. -
18
Entry Point AI
Entry Point AI
$49 per monthEntry Point AI serves as a cutting-edge platform for optimizing both proprietary and open-source language models. It allows users to manage prompts, fine-tune models, and evaluate their performance all from a single interface. Once you hit the ceiling of what prompt engineering can achieve, transitioning to model fine-tuning becomes essential, and our platform simplifies this process. Rather than instructing a model on how to act, fine-tuning teaches it desired behaviors. This process works in tandem with prompt engineering and retrieval-augmented generation (RAG), enabling users to fully harness the capabilities of AI models. Through fine-tuning, you can enhance the quality of your prompts significantly. Consider it an advanced version of few-shot learning where key examples are integrated directly into the model. For more straightforward tasks, you have the option to train a lighter model that can match or exceed the performance of a more complex one, leading to reduced latency and cost. Additionally, you can configure your model to avoid certain responses for safety reasons, which helps safeguard your brand and ensures proper formatting. By incorporating examples into your dataset, you can also address edge cases and guide the behavior of the model, ensuring it meets your specific requirements effectively. This comprehensive approach ensures that you not only optimize performance but also maintain control over the model's responses. -
19
Cargoship
Cargoship
Choose a model from our extensive open-source library, launch the container, and seamlessly integrate the model API into your application. Whether you're working with image recognition or natural language processing, all our models come pre-trained and are conveniently packaged within a user-friendly API. Our diverse collection of models continues to expand, ensuring you have access to the latest innovations. We carefully select and refine the top models available from sources like HuggingFace and Github. You have the option to host the model on your own with ease or obtain your personal endpoint and API key with just a single click. Cargoship stays at the forefront of advancements in the AI field, relieving you of the burden of keeping up. With the Cargoship Model Store, you'll find a comprehensive selection tailored for every machine learning application. The website features interactive demos for you to explore, along with in-depth guidance that covers everything from the model's capabilities to implementation techniques. Regardless of your skill level, we’re committed to providing you with thorough instructions to ensure your success. Additionally, our support team is always available to assist you with any questions you may have. -
20
Tune Studio
NimbleBox
$10/user/ month Tune Studio is a highly accessible and adaptable platform that facilitates the effortless fine-tuning of AI models. It enables users to modify pre-trained machine learning models to meet their individual requirements, all without the need for deep technical knowledge. Featuring a user-friendly design, Tune Studio makes it easy to upload datasets, adjust settings, and deploy refined models quickly and effectively. Regardless of whether your focus is on natural language processing, computer vision, or various other AI applications, Tune Studio provides powerful tools to enhance performance, shorten training durations, and speed up AI development. This makes it an excellent choice for both novices and experienced practitioners in the AI field, ensuring that everyone can harness the power of AI effectively. The platform's versatility positions it as a critical asset in the ever-evolving landscape of artificial intelligence. -
21
Ilus AI
Ilus AI
$0.06 per creditTo quickly begin using our illustration generator, leveraging pre-existing models is the most efficient approach. However, if you wish to showcase a specific style or object that isn't included in these ready-made models, you have the option to customize your own by uploading between 5 to 15 illustrations. There are no restrictions on the fine-tuning process, making it applicable for illustrations, icons, or any other assets you might require. For more detailed information on fine-tuning, be sure to check our resources. The generated illustrations can be exported in both PNG and SVG formats. Fine-tuning enables you to adapt the stable-diffusion AI model to focus on a specific object or style, resulting in a new model that produces images tailored to those characteristics. It's essential to note that the quality of the fine-tuning will depend on the data you submit. Ideally, providing around 5 to 15 images is recommended, and these images should feature unique subjects without any distracting backgrounds or additional objects. Furthermore, to ensure compatibility for SVG export, the images should exclude gradients and shadows, although PNG formats can still accommodate those elements without issue. This process opens up endless possibilities for creating personalized and high-quality illustrations. -
22
prompteasy.ai
prompteasy.ai
FreeNow you have the opportunity to fine-tune GPT without any technical expertise required. By customizing AI models to suit your individual requirements, you can enhance their capabilities effortlessly. With Prompteasy.ai, fine-tuning AI models takes just seconds, streamlining the process of creating personalized AI solutions. The best part is that you don't need to possess any knowledge of AI fine-tuning; our sophisticated models handle everything for you. As we launch Prompteasy, we are excited to offer it completely free of charge initially, with plans to introduce pricing options later this year. Our mission is to democratize AI, making it intelligent and accessible to everyone. We firmly believe that the real potential of AI is unlocked through the way we train and manage foundational models, rather than merely utilizing them as they come. You can set aside the hassle of generating extensive datasets; simply upload your relevant materials and engage with our AI using natural language. We will take care of constructing the dataset needed for fine-tuning, allowing you to simply converse with the AI, download the tailored dataset, and enhance GPT at your convenience. This innovative approach empowers users to harness the full capabilities of AI like never before. -
23
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
24
Replicate
Replicate
FreeReplicate is a comprehensive platform designed to help developers and businesses seamlessly run, fine-tune, and deploy machine learning models with just a few lines of code. It hosts thousands of community-contributed models that support diverse use cases such as image and video generation, speech synthesis, music creation, and text generation. Users can enhance model performance by fine-tuning models with their own datasets, enabling highly specialized AI applications. The platform supports custom model deployment through Cog, an open-source tool that automates packaging and deployment on cloud infrastructure while managing scaling transparently. Replicate’s pricing model is usage-based, ensuring customers pay only for the compute time they consume, with support for a variety of GPU and CPU options. The system provides built-in monitoring and logging capabilities to track model performance and troubleshoot predictions. Major companies like Buzzfeed, Unsplash, and Character.ai use Replicate to power their AI features. Replicate’s goal is to democratize access to scalable, production-ready machine learning infrastructure, making AI deployment accessible even to non-experts. -
25
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
26
Oumi
Oumi
FreeOumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases. -
27
FinetuneDB
FinetuneDB
Capture production data. Evaluate outputs together and fine-tune the performance of your LLM. A detailed log overview will help you understand what is happening in production. Work with domain experts, product managers and engineers to create reliable model outputs. Track AI metrics, such as speed, token usage, and quality scores. Copilot automates model evaluations and improvements for your use cases. Create, manage, or optimize prompts for precise and relevant interactions between AI models and users. Compare fine-tuned models and foundation models to improve prompt performance. Build a fine-tuning dataset with your team. Create custom fine-tuning data to optimize model performance. -
28
Forefront
Forefront.ai
Access cutting-edge language models with just a click. Join a community of over 8,000 developers who are creating the next generation of transformative applications. You can fine-tune and implement models like GPT-J, GPT-NeoX, Codegen, and FLAN-T5, each offering distinct features and pricing options. Among these, GPT-J stands out as the quickest model, whereas GPT-NeoX boasts the highest power, with even more models in development. These versatile models are suitable for a variety of applications, including classification, entity extraction, code generation, chatbots, content development, summarization, paraphrasing, sentiment analysis, and so much more. With their extensive pre-training on a diverse range of internet text, these models can be fine-tuned to meet specific needs, allowing for superior performance across many different tasks. This flexibility enables developers to create innovative solutions tailored to their unique requirements. -
29
Olmo 3
Ai2
FreeOlmo 3 represents a comprehensive family of open models featuring variations with 7 billion and 32 billion parameters, offering exceptional capabilities in base performance, reasoning, instruction, and reinforcement learning, while also providing transparency throughout the model development process, which includes access to raw training datasets, intermediate checkpoints, training scripts, extended context support (with a window of 65,536 tokens), and provenance tools. The foundation of these models is built upon the Dolma 3 dataset, which comprises approximately 9 trillion tokens and utilizes a careful blend of web content, scientific papers, programming code, and lengthy documents; this thorough pre-training, mid-training, and long-context approach culminates in base models that undergo post-training enhancements through supervised fine-tuning, preference optimization, and reinforcement learning with accountable rewards, resulting in the creation of the Think and Instruct variants. Notably, the 32 billion Think model has been recognized as the most powerful fully open reasoning model to date, demonstrating performance that closely rivals that of proprietary counterparts in areas such as mathematics, programming, and intricate reasoning tasks, thereby marking a significant advancement in open model development. This innovation underscores the potential for open-source models to compete with traditional, closed systems in various complex applications. -
30
Bakery
Bakery
FreeEasily tweak and profit from your AI models with just a single click. Designed for AI startups, machine learning engineers, and researchers, Bakery is an innovative platform that simplifies the process of fine-tuning and monetizing AI models. Users can either create new datasets or upload existing ones, modify model parameters, and share their models on a dedicated marketplace. The platform accommodates a broad range of model types and offers access to community-curated datasets to aid in project creation. Bakery’s fine-tuning process is optimized for efficiency, allowing users to construct, evaluate, and deploy models seamlessly. Additionally, the platform integrates with tools such as Hugging Face and supports decentralized storage options, promoting adaptability and growth for various AI initiatives. Bakery also fosters a collaborative environment where contributors can work together on AI models while keeping their model parameters and data confidential. This approach guarantees accurate attribution and equitable revenue sharing among all participants, enhancing the overall collaborative experience in AI development. The platform's user-friendly interface further ensures that even those new to AI can navigate the complexities of model fine-tuning and monetization with ease. -
31
Giga ML
Giga ML
We are excited to announce the launch of our X1 large series of models. The most robust model from Giga ML is now accessible for both pre-training and fine-tuning in an on-premises environment. Thanks to our compatibility with Open AI, existing integrations with tools like long chain, llama-index, and others function effortlessly. You can also proceed with pre-training LLMs using specialized data sources such as industry-specific documents or company files. The landscape of large language models (LLMs) is rapidly evolving, creating incredible opportunities for advancements in natural language processing across multiple fields. Despite this growth, several significant challenges persist in the industry. At Giga ML, we are thrilled to introduce the X1 Large 32k model, an innovative on-premise LLM solution designed specifically to tackle these pressing challenges, ensuring that organizations can harness the full potential of LLMs effectively. With this launch, we aim to empower businesses to elevate their language processing capabilities. -
32
Simplismart
Simplismart
Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness. -
33
Together AI
Together AI
$0.0001 per 1k tokensTogether AI offers a cloud platform purpose-built for developers creating AI-native applications, providing optimized GPU infrastructure for training, fine-tuning, and inference at unprecedented scale. Its environment is engineered to remain stable even as customers push workloads to trillions of tokens, ensuring seamless reliability in production. By continuously improving inference runtime performance and GPU utilization, Together AI delivers a cost-effective foundation for companies building frontier-level AI systems. The platform features a rich model library including open-source, specialized, and multimodal models for chat, image generation, video creation, and coding tasks. Developers can replace closed APIs effortlessly through OpenAI-compatible endpoints. Innovations such as ATLAS, FlashAttention, Flash Decoding, and Mixture of Agents highlight Together AI’s strong research contributions. Instant GPU clusters allow teams to scale from prototypes to distributed workloads in minutes. AI-native companies rely on Together AI to break performance barriers and accelerate time to market. -
34
Stochastic
Stochastic
An AI system designed for businesses that facilitates local training on proprietary data and enables deployment on your chosen cloud infrastructure, capable of scaling to accommodate millions of users without requiring an engineering team. You can create, customize, and launch your own AI-driven chat interface, such as a finance chatbot named xFinance, which is based on a 13-billion parameter model fine-tuned on an open-source architecture using LoRA techniques. Our objective was to demonstrate that significant advancements in financial NLP tasks can be achieved affordably. Additionally, you can have a personal AI assistant that interacts with your documents, handling both straightforward and intricate queries across single or multiple documents. This platform offers a seamless deep learning experience for enterprises, featuring hardware-efficient algorithms that enhance inference speed while reducing costs. It also includes real-time monitoring and logging of resource use and cloud expenses associated with your deployed models. Furthermore, xTuring serves as open-source personalization software for AI, simplifying the process of building and managing large language models (LLMs) by offering an intuitive interface to tailor these models to your specific data and application needs, ultimately fostering greater efficiency and customization. With these innovative tools, companies can harness the power of AI to streamline their operations and enhance user engagement. -
35
NetApp AIPod
NetApp
NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market. -
36
Yi-Lightning
Yi-Lightning
Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field. -
37
Lumino
Lumino
Introducing a pioneering compute protocol that combines integrated hardware and software for the training and fine-tuning of AI models. Experience a reduction in training expenses by as much as 80%. You can deploy your models in mere seconds, utilizing either open-source templates or your own customized models. Effortlessly debug your containers while having access to vital resources such as GPU, CPU, Memory, and other performance metrics. Real-time log monitoring allows for immediate insights into your processes. Maintain complete accountability by tracing all models and training datasets with cryptographically verified proofs. Command the entire training workflow effortlessly with just a few straightforward commands. Additionally, you can earn block rewards by contributing your computer to the network, while also tracking essential metrics like connectivity and uptime to ensure optimal performance. The innovative design of this system not only enhances efficiency but also promotes a collaborative environment for AI development. -
38
Mistral Large 3
Mistral AI
FreeMistral Large 3 pushes open-source AI into frontier territory with a massive sparse MoE architecture that activates 41B parameters per token while maintaining a highly efficient 675B total parameter design. It sets a new performance standard by combining long-context reasoning, multilingual fluency across 40+ languages, and robust multimodal comprehension within a single unified model. Trained end-to-end on thousands of NVIDIA H200 GPUs, it reaches parity with top closed-source instruction models while remaining fully accessible under the Apache 2.0 license. Developers benefit from optimized deployments through partnerships with NVIDIA, Red Hat, and vLLM, enabling smooth inference on A100, H100, and Blackwell-class systems. The model ships in both base and instruct variants, with a reasoning-enhanced version on the way for even deeper analytical capabilities. Beyond general intelligence, Mistral Large 3 is engineered for enterprise customization, allowing organizations to refine the model on internal datasets or domain-specific tasks. Its efficient token generation and powerful multimodal stack make it ideal for coding, document analysis, knowledge workflows, agentic systems, and multilingual communications. With Mistral Large 3, organizations can finally deploy frontier-class intelligence with full transparency, flexibility, and control. -
39
NLP Cloud
NLP Cloud
$29 per monthWe offer fast and precise AI models optimized for deployment in production environments. Our inference API is designed for high availability, utilizing cutting-edge NVIDIA GPUs to ensure optimal performance. We have curated a selection of top open-source natural language processing (NLP) models from the community, making them readily available for your use. You have the flexibility to fine-tune your own models, including GPT-J, or upload your proprietary models for seamless deployment in production. From your user-friendly dashboard, you can easily upload or train/fine-tune AI models, allowing you to integrate them into production immediately without the hassle of managing deployment factors such as memory usage, availability, or scalability. Moreover, you can upload an unlimited number of models and deploy them as needed, ensuring that you can continuously innovate and adapt to your evolving requirements. This provides a robust framework for leveraging AI technologies in your projects. -
40
StableVicuna
Stability AI
FreeStableVicuna represents the inaugural large-scale open-source chatbot developed through reinforced learning from human feedback (RLHF). It is an advanced version of the Vicuna v0 13b model, which has undergone further instruction fine-tuning and RLHF training. To attain the impressive capabilities of StableVicuna, we use Vicuna as the foundational model and adhere to the established three-stage RLHF framework proposed by Steinnon et al. and Ouyang et al. Specifically, we perform additional training on the base Vicuna model with supervised fine-tuning (SFT), utilizing a blend of three distinct datasets. The first is the OpenAssistant Conversations Dataset (OASST1), which consists of 161,443 human-generated messages across 66,497 conversation trees in 35 languages. The second dataset is GPT4All Prompt Generations, encompassing 437,605 prompts paired with responses created by GPT-3.5 Turbo. Lastly, the Alpaca dataset features 52,000 instructions and demonstrations that were produced using OpenAI's text-davinci-003 model. This collective approach to training enhances the chatbot's ability to engage effectively in diverse conversational contexts. -
41
Arcee AI
Arcee AI
Enhancing continual pre-training for model enrichment utilizing proprietary data is essential. It is vital to ensure that models tailored for specific domains provide a seamless user experience. Furthermore, developing a production-ready RAG pipeline that delivers ongoing assistance is crucial. With Arcee's SLM Adaptation system, you can eliminate concerns about fine-tuning, infrastructure setup, and the myriad complexities of integrating various tools that are not specifically designed for the task. The remarkable adaptability of our product allows for the efficient training and deployment of your own SLMs across diverse applications, whether for internal purposes or customer use. By leveraging Arcee’s comprehensive VPC service for training and deploying your SLMs, you can confidently maintain ownership and control over your data and models, ensuring that they remain exclusively yours. This commitment to data sovereignty reinforces trust and security in your operational processes. -
42
Dynamiq
Dynamiq
$125/month Dynamiq serves as a comprehensive platform tailored for engineers and data scientists, enabling them to construct, deploy, evaluate, monitor, and refine Large Language Models for various enterprise applications. Notable characteristics include: 🛠️ Workflows: Utilize a low-code interface to design GenAI workflows that streamline tasks on a large scale. 🧠 Knowledge & RAG: Develop personalized RAG knowledge bases and swiftly implement vector databases. 🤖 Agents Ops: Design specialized LLM agents capable of addressing intricate tasks while linking them to your internal APIs. 📈 Observability: Track all interactions and conduct extensive evaluations of LLM quality. 🦺 Guardrails: Ensure accurate and dependable LLM outputs through pre-existing validators, detection of sensitive information, and safeguards against data breaches. 📻 Fine-tuning: Tailor proprietary LLM models to align with your organization's specific needs and preferences. With these features, Dynamiq empowers users to harness the full potential of language models for innovative solutions. -
43
Lamini
Lamini
$99 per monthLamini empowers organizations to transform their proprietary data into advanced LLM capabilities, providing a platform that allows internal software teams to elevate their skills to match those of leading AI teams like OpenAI, all while maintaining the security of their existing systems. It ensures structured outputs accompanied by optimized JSON decoding, features a photographic memory enabled by retrieval-augmented fine-tuning, and enhances accuracy while significantly minimizing hallucinations. Additionally, it offers highly parallelized inference for processing large batches efficiently and supports parameter-efficient fine-tuning that scales to millions of production adapters. Uniquely, Lamini stands out as the sole provider that allows enterprises to safely and swiftly create and manage their own LLMs in any environment. The company harnesses cutting-edge technologies and research that contributed to the development of ChatGPT from GPT-3 and GitHub Copilot from Codex. Among these advancements are fine-tuning, reinforcement learning from human feedback (RLHF), retrieval-augmented training, data augmentation, and GPU optimization, which collectively enhance the capabilities of AI solutions. Consequently, Lamini positions itself as a crucial partner for businesses looking to innovate and gain a competitive edge in the AI landscape. -
44
AI21 Studio
AI21 Studio
$29 per monthAI21 Studio offers API access to its Jurassic-1 large language models, which enable robust text generation and understanding across numerous live applications. Tackle any language-related challenge with ease, as our Jurassic-1 models are designed to understand natural language instructions and can quickly adapt to new tasks with minimal examples. Leverage our targeted APIs for essential functions such as summarizing and paraphrasing, allowing you to achieve high-quality outcomes at a competitive price without starting from scratch. If you need to customize a model, fine-tuning is just three clicks away, with training that is both rapid and cost-effective, ensuring that your models are deployed without delay. Enhance your applications by integrating an AI co-writer to provide your users with exceptional capabilities. Boost user engagement and success with features that include long-form draft creation, paraphrasing, content repurposing, and personalized auto-completion options, ultimately enriching the overall user experience. Your application can become a powerful tool in the hands of every user. -
45
Vicuna
lmsys.org
FreeVicuna-13B is an open-source conversational agent developed through the fine-tuning of LLaMA, utilizing a dataset of user-shared dialogues gathered from ShareGPT. Initial assessments, with GPT-4 serving as an evaluator, indicate that Vicuna-13B achieves over 90% of the quality exhibited by OpenAI's ChatGPT and Google Bard, and it surpasses other models such as LLaMA and Stanford Alpaca in more than 90% of instances. The entire training process for Vicuna-13B incurs an estimated expenditure of approximately $300. Additionally, the source code and model weights, along with an interactive demonstration, are made available for public access under non-commercial terms, fostering a collaborative environment for further development and exploration. This openness encourages innovation and enables users to experiment with the model's capabilities in diverse applications.