Best Timeplus Alternatives in 2025

Find the top alternatives to Timeplus currently available. Compare ratings, reviews, pricing, and features of Timeplus alternatives in 2025. Slashdot lists the best Timeplus alternatives on the market that offer competing products that are similar to Timeplus. Sort through Timeplus alternatives below to make the best choice for your needs

  • 1
    StarTree Reviews
    See Software
    Learn More
    Compare Both
    StarTree Cloud is a fully-managed real-time analytics platform designed for OLAP at massive speed and scale for user-facing applications. Powered by Apache Pinot, StarTree Cloud provides enterprise-grade reliability and advanced capabilities such as tiered storage, scalable upserts, plus additional indexes and connectors. It integrates seamlessly with transactional databases and event streaming platforms, ingesting data at millions of events per second and indexing it for lightning-fast query responses. StarTree Cloud is available on your favorite public cloud or for private SaaS deployment. StarTree Cloud includes StarTree Data Manager, which allows you to ingest data from both real-time sources such as Amazon Kinesis, Apache Kafka, Apache Pulsar, or Redpanda, as well as batch data sources such as data warehouses like Snowflake, Delta Lake or Google BigQuery, or object stores like Amazon S3, Apache Flink, Apache Hadoop, or Apache Spark. StarTree ThirdEye is an add-on anomaly detection system running on top of StarTree Cloud that observes your business-critical metrics, alerting you and allowing you to perform root-cause analysis — all in real-time.
  • 2
    Arroyo Reviews
    Scale from zero to millions of events per second effortlessly. Arroyo is delivered as a single, compact binary, allowing for local development on MacOS or Linux, and seamless deployment to production environments using Docker or Kubernetes. As a pioneering stream processing engine, Arroyo has been specifically designed to simplify real-time processing, making it more accessible than traditional batch processing. Its architecture empowers anyone with SQL knowledge to create dependable, efficient, and accurate streaming pipelines. Data scientists and engineers can independently develop comprehensive real-time applications, models, and dashboards without needing a specialized team of streaming professionals. By employing SQL, users can transform, filter, aggregate, and join data streams, all while achieving sub-second response times. Your streaming pipelines should remain stable and not trigger alerts simply because Kubernetes has chosen to reschedule your pods. Built for modern, elastic cloud infrastructures, Arroyo supports everything from straightforward container runtimes like Fargate to complex, distributed setups on Kubernetes, ensuring versatility and robust performance across various environments. This innovative approach to stream processing significantly enhances the ability to manage data flows in real-time applications.
  • 3
    Striim Reviews
    Data integration for hybrid clouds Modern, reliable data integration across both your private cloud and public cloud. All this in real-time, with change data capture and streams. Striim was developed by the executive and technical team at GoldenGate Software. They have decades of experience in mission critical enterprise workloads. Striim can be deployed in your environment as a distributed platform or in the cloud. Your team can easily adjust the scaleability of Striim. Striim is fully secured with HIPAA compliance and GDPR compliance. Built from the ground up to support modern enterprise workloads, whether they are hosted in the cloud or on-premise. Drag and drop to create data flows among your sources and targets. Real-time SQL queries allow you to process, enrich, and analyze streaming data.
  • 4
    Materialize Reviews

    Materialize

    Materialize

    $0.98 per hour
    Materialize is an innovative reactive database designed to provide updates to views incrementally. It empowers developers to seamlessly work with streaming data through the use of standard SQL. One of the key advantages of Materialize is its ability to connect directly to a variety of external data sources without the need for pre-processing. Users can link to real-time streaming sources such as Kafka, Postgres databases, and change data capture (CDC), as well as access historical data from files or S3. The platform enables users to execute queries, perform joins, and transform various data sources using standard SQL, presenting the outcomes as incrementally-updated Materialized views. As new data is ingested, queries remain active and are continuously refreshed, allowing developers to create data visualizations or real-time applications with ease. Moreover, constructing applications that utilize streaming data becomes a straightforward task, often requiring just a few lines of SQL code, which significantly enhances productivity. With Materialize, developers can focus on building innovative solutions rather than getting bogged down in complex data management tasks.
  • 5
    VeloDB Reviews
    VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data. It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries. VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data. The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources. Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
  • 6
    Rockset Reviews
    Real-time analytics on raw data. Live ingest from S3, DynamoDB, DynamoDB and more. Raw data can be accessed as SQL tables. In minutes, you can create amazing data-driven apps and live dashboards. Rockset is a serverless analytics and search engine that powers real-time applications and live dashboards. You can directly work with raw data such as JSON, XML and CSV. Rockset can import data from real-time streams and data lakes, data warehouses, and databases. You can import real-time data without the need to build pipelines. Rockset syncs all new data as it arrives in your data sources, without the need to create a fixed schema. You can use familiar SQL, including filters, joins, and aggregations. Rockset automatically indexes every field in your data, making it lightning fast. Fast queries are used to power your apps, microservices and live dashboards. Scale without worrying too much about servers, shards or pagers.
  • 7
    Apache Doris Reviews

    Apache Doris

    The Apache Software Foundation

    Free
    Apache Doris serves as a cutting-edge data warehouse tailored for real-time analytics, enabling exceptionally rapid analysis of data at scale. It features both push-based micro-batch and pull-based streaming data ingestion that occurs within a second, alongside a storage engine capable of real-time upserts, appends, and pre-aggregation. With its columnar storage architecture, MPP design, cost-based query optimization, and vectorized execution engine, it is optimized for handling high-concurrency and high-throughput queries efficiently. Moreover, it allows for federated querying across various data lakes, including Hive, Iceberg, and Hudi, as well as relational databases such as MySQL and PostgreSQL. Doris supports complex data types like Array, Map, and JSON, and includes a Variant data type that facilitates automatic inference for JSON structures, along with advanced text search capabilities through NGram bloomfilters and inverted indexes. Its distributed architecture ensures linear scalability and incorporates workload isolation and tiered storage to enhance resource management. Additionally, it accommodates both shared-nothing clusters and the separation of storage from compute resources, providing flexibility in deployment and management.
  • 8
    ksqlDB Reviews
    With your data now actively flowing, it's essential to extract meaningful insights from it. Stream processing allows for immediate analysis of your data streams, though establishing the necessary infrastructure can be a daunting task. To address this challenge, Confluent has introduced ksqlDB, a database specifically designed for applications that require stream processing. By continuously processing data streams generated across your organization, you can turn your data into actionable insights right away. ksqlDB features an easy-to-use syntax that facilitates quick access to and enhancement of data within Kafka, empowering development teams to create real-time customer experiences and meet operational demands driven by data. This platform provides a comprehensive solution for gathering data streams, enriching them, and executing queries on newly derived streams and tables. As a result, you will have fewer infrastructure components to deploy, manage, scale, and secure. By minimizing the complexity in your data architecture, you can concentrate more on fostering innovation and less on technical maintenance. Ultimately, ksqlDB transforms the way businesses leverage their data for growth and efficiency.
  • 9
    StarRocks Reviews
    Regardless of whether your project involves a single table or numerous tables, StarRocks guarantees an impressive performance improvement of at least 300% when compared to other widely used solutions. With its comprehensive array of connectors, you can seamlessly ingest streaming data and capture information in real time, ensuring that you always have access to the latest insights. The query engine is tailored to suit your specific use cases, allowing for adaptable analytics without the need to relocate data or modify SQL queries. This provides an effortless way to scale your analytics capabilities as required. StarRocks not only facilitates a swift transition from data to actionable insights, but also stands out with its unmatched performance, offering a holistic OLAP solution that addresses the most prevalent data analytics requirements. Its advanced memory-and-disk-based caching framework is purpose-built to reduce I/O overhead associated with retrieving data from external storage, significantly enhancing query performance while maintaining efficiency. This unique combination of features ensures that users can maximize their data's potential without unnecessary delays.
  • 10
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 11
    Aerospike Reviews
    Aerospike is the global leader for next-generation, real time NoSQL data solutions at any scale. Aerospike helps enterprises overcome seemingly impossible data bottlenecks and compete with other companies at a fraction of the cost and complexity of legacy NoSQL databases. Aerospike's Hybrid Memory Architecture™ is a patented technology that unlocks the full potential of modern hardware and delivers previously unimaginable value. It does this by delivering unimaginable value from huge amounts of data at both the edge, core, and in the cloud. Aerospike empowers customers with the ability to instantly combat fraud, dramatically increase shopping cart sizes, deploy global digital payment networks, and provide instant, one-to-1 personalization for millions. Aerospike customers include Airtel and Banca d'Italia as well as Snap, Verizon Media, Wayfair, PayPal, Snap, Verizon Media, and Nielsen. The company's headquarters is in Mountain View, California. Additional locations are in London, Bengaluru, India, and Tel Aviv in Israel.
  • 12
    Kinetica Reviews
    A cloud database that can scale to handle large streaming data sets. Kinetica harnesses modern vectorized processors to perform orders of magnitude faster for real-time spatial or temporal workloads. In real-time, track and gain intelligence from billions upon billions of moving objects. Vectorization unlocks new levels in performance for analytics on spatial or time series data at large scale. You can query and ingest simultaneously to take action on real-time events. Kinetica's lockless architecture allows for distributed ingestion, which means data is always available to be accessed as soon as it arrives. Vectorized processing allows you to do more with fewer resources. More power means simpler data structures which can be stored more efficiently, which in turn allows you to spend less time engineering your data. Vectorized processing allows for incredibly fast analytics and detailed visualizations of moving objects at large scale.
  • 13
    Yandex Data Streams Reviews
    Facilitates seamless data exchange among components within microservice architectures. When utilized as a communication method for microservices, it not only streamlines integration but also enhances reliability and scalability. The system allows for reading and writing data in nearly real-time, while providing the flexibility to set data throughput and storage durations according to specific requirements. Users can finely configure resources for processing data streams, accommodating anything from small streams of 100 KB/s to more substantial ones at 100 MB/s. Additionally, Yandex Data Transfer enables the delivery of a single stream to various targets with distinct retention policies. Data is automatically replicated across multiple availability zones that are geographically distributed, ensuring redundancy and accessibility. After the initial setup, managing data streams can be done centrally through either the management console or the API, offering convenient oversight. It also supports continuous data collection from diverse sources, including website browsing histories and application logs, making it a versatile tool for real-time analytics. Overall, Yandex Data Streams stands out for its robust capabilities in handling various data ingestion needs across different platforms.
  • 14
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 15
    HarperDB Reviews
    HarperDB is an innovative platform that integrates database management, caching, application development, and streaming capabilities into a cohesive system. This allows businesses to efficiently implement global-scale back-end services with significantly reduced effort, enhanced performance, and cost savings compared to traditional methods. Users can deploy custom applications along with pre-existing add-ons, ensuring a high-throughput and ultra-low latency environment for their data needs. Its exceptionally fast distributed database offers vastly superior throughput rates than commonly used NoSQL solutions while maintaining unlimited horizontal scalability. Additionally, HarperDB supports real-time pub/sub communication and data processing through protocols like MQTT, WebSocket, and HTTP. This means organizations can leverage powerful data-in-motion functionalities without the necessity of adding extra services, such as Kafka, to their architecture. By prioritizing features that drive business growth, companies can avoid the complexities of managing intricate infrastructures. While you can’t alter the speed of light, you can certainly minimize the distance between your users and their data, enhancing overall efficiency and responsiveness. In doing so, HarperDB empowers businesses to focus on innovation and progress rather than getting bogged down by technical challenges.
  • 16
    DoubleCloud Reviews

    DoubleCloud

    DoubleCloud

    $0.024 per 1 GB per month
    Optimize your time and reduce expenses by simplifying data pipelines using hassle-free open source solutions. Covering everything from data ingestion to visualization, all components are seamlessly integrated, fully managed, and exceptionally reliable, ensuring your engineering team enjoys working with data. You can opt for any of DoubleCloud’s managed open source services or take advantage of the entire platform's capabilities, which include data storage, orchestration, ELT, and instantaneous visualization. We offer premier open source services such as ClickHouse, Kafka, and Airflow, deployable on platforms like Amazon Web Services or Google Cloud. Our no-code ELT tool enables real-time data synchronization between various systems, providing a fast, serverless solution that integrates effortlessly with your existing setup. With our managed open-source data visualization tools, you can easily create real-time visual representations of your data through interactive charts and dashboards. Ultimately, our platform is crafted to enhance the daily operations of engineers, making their tasks more efficient and enjoyable. This focus on convenience is what sets us apart in the industry.
  • 17
    SingleStore Reviews
    SingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently.
  • 18
    Amazon Data Firehose Reviews
    Effortlessly capture, modify, and transfer streaming data in real time. You can create a delivery stream, choose your desired destination, and begin streaming data with minimal effort. The system automatically provisions and scales necessary compute, memory, and network resources without the need for continuous management. You can convert raw streaming data into various formats such as Apache Parquet and dynamically partition it without the hassle of developing your processing pipelines. Amazon Data Firehose is the most straightforward method to obtain, transform, and dispatch data streams in mere seconds to data lakes, data warehouses, and analytics platforms. To utilize Amazon Data Firehose, simply establish a stream by specifying the source, destination, and any transformations needed. The service continuously processes your data stream, automatically adjusts its scale according to the data volume, and ensures delivery within seconds. You can either choose a source for your data stream or utilize the Firehose Direct PUT API to write data directly. This streamlined approach allows for greater efficiency and flexibility in handling data streams.
  • 19
    Amazon Timestream Reviews
    Amazon Timestream is an efficient, scalable, and serverless time series database designed for IoT and operational applications, capable of storing and analyzing trillions of events daily with speeds up to 1,000 times faster and costs as low as 1/10th that of traditional relational databases. By efficiently managing the lifecycle of time series data, Amazon Timestream reduces both time and expenses by keeping current data in memory while systematically transferring historical data to a more cost-effective storage tier based on user-defined policies. Its specialized query engine allows users to seamlessly access and analyze both recent and historical data without the need to specify whether the data is in memory or in the cost-optimized tier. Additionally, Amazon Timestream features integrated time series analytics functions, enabling users to detect trends and patterns in their data almost in real-time, making it an invaluable tool for data-driven decision-making. Furthermore, this service is designed to scale effortlessly with your data needs while ensuring optimal performance and cost efficiency.
  • 20
    SQLstream Reviews

    SQLstream

    Guavus, a Thales company

    In the field of IoT stream processing and analytics, SQLstream ranks #1 according to ABI Research. Used by Verizon, Walmart, Cisco, and Amazon, our technology powers applications on premises, in the cloud, and at the edge. SQLstream enables time-critical alerts, live dashboards, and real-time action with sub-millisecond latency. Smart cities can reroute ambulances and fire trucks or optimize traffic light timing based on real-time conditions. Security systems can detect hackers and fraudsters, shutting them down right away. AI / ML models, trained with streaming sensor data, can predict equipment failures. Thanks to SQLstream's lightning performance -- up to 13 million rows / second / CPU core -- companies have drastically reduced their footprint and cost. Our efficient, in-memory processing allows operations at the edge that would otherwise be impossible. Acquire, prepare, analyze, and act on data in any format from any source. Create pipelines in minutes not months with StreamLab, our interactive, low-code, GUI dev environment. Edit scripts instantly and view instantaneous results without compiling. Deploy with native Kubernetes support. Easy installation includes Docker, AWS, Azure, Linux, VMWare, and more
  • 21
    Hitachi Streaming Data Platform Reviews
    The Hitachi Streaming Data Platform (SDP) is engineered for real-time processing of extensive time-series data as it is produced. Utilizing in-memory and incremental computation techniques, SDP allows for rapid analysis that circumvents the typical delays experienced with conventional stored data processing methods. Users have the capability to outline summary analysis scenarios through Continuous Query Language (CQL), which resembles SQL, thus enabling adaptable and programmable data examination without requiring bespoke applications. The platform's architecture includes various components such as development servers, data-transfer servers, data-analysis servers, and dashboard servers, which together create a scalable and efficient data processing ecosystem. Additionally, SDP’s modular framework accommodates multiple data input and output formats, including text files and HTTP packets, and seamlessly integrates with visualization tools like RTView for real-time performance monitoring. This comprehensive design ensures that users can effectively manage and analyze data streams as they occur.
  • 22
    Astra Streaming Reviews
    Engaging applications captivate users while motivating developers to innovate. To meet the growing demands of the digital landscape, consider utilizing the DataStax Astra Streaming service platform. This cloud-native platform for messaging and event streaming is built on the robust foundation of Apache Pulsar. With Astra Streaming, developers can create streaming applications that leverage a multi-cloud, elastically scalable architecture. Powered by the advanced capabilities of Apache Pulsar, this platform offers a comprehensive solution that encompasses streaming, queuing, pub/sub, and stream processing. Astra Streaming serves as an ideal partner for Astra DB, enabling current users to construct real-time data pipelines seamlessly connected to their Astra DB instances. Additionally, the platform's flexibility allows for deployment across major public cloud providers, including AWS, GCP, and Azure, thereby preventing vendor lock-in. Ultimately, Astra Streaming empowers developers to harness the full potential of their data in real-time environments.
  • 23
    Imply Reviews
    Imply is a cutting-edge analytics platform that leverages Apache Druid to manage extensive, high-performance OLAP (Online Analytical Processing) tasks in real-time. It excels at ingesting data instantly, delivering rapid query results, and enabling intricate analytical inquiries across vast datasets while maintaining low latency. This platform is specifically designed for enterprises that require engaging analytics, real-time dashboards, and data-centric decision-making on a large scale. Users benefit from an intuitive interface for exploring data, enhanced by features like multi-tenancy, detailed access controls, and operational insights. Its distributed architecture and ability to scale make Imply particularly advantageous for applications in streaming data analysis, business intelligence, and real-time monitoring across various sectors. Furthermore, its capabilities ensure that organizations can efficiently adapt to increasing data demands and quickly derive actionable insights from their data.
  • 24
    IBM Db2 Big SQL Reviews
    IBM Db2 Big SQL is a sophisticated hybrid SQL-on-Hadoop engine that facilitates secure and advanced data querying across a range of enterprise big data sources, such as Hadoop, object storage, and data warehouses. This enterprise-grade engine adheres to ANSI standards and provides massively parallel processing (MPP) capabilities, enhancing the efficiency of data queries. With Db2 Big SQL, users can execute a single database connection or query that spans diverse sources, including Hadoop HDFS, WebHDFS, relational databases, NoSQL databases, and object storage solutions. It offers numerous advantages, including low latency, high performance, robust data security, compatibility with SQL standards, and powerful federation features, enabling both ad hoc and complex queries. Currently, Db2 Big SQL is offered in two distinct variations: one that integrates seamlessly with Cloudera Data Platform and another as a cloud-native service on the IBM Cloud Pak® for Data platform. This versatility allows organizations to access and analyze data effectively, performing queries on both batch and real-time data across various sources, thus streamlining their data operations and decision-making processes. In essence, Db2 Big SQL provides a comprehensive solution for managing and querying extensive datasets in an increasingly complex data landscape.
  • 25
    WarpStream Reviews

    WarpStream

    WarpStream

    $2,987 per month
    WarpStream serves as a data streaming platform that is fully compatible with Apache Kafka, leveraging object storage to eliminate inter-AZ networking expenses and disk management, while offering infinite scalability within your VPC. The deployment of WarpStream occurs through a stateless, auto-scaling agent binary, which operates without the need for local disk management. This innovative approach allows agents to stream data directly to and from object storage, bypassing local disk buffering and avoiding any data tiering challenges. Users can instantly create new “virtual clusters” through our control plane, accommodating various environments, teams, or projects without the hassle of dedicated infrastructure. With its seamless protocol compatibility with Apache Kafka, WarpStream allows you to continue using your preferred tools and software without any need for application rewrites or proprietary SDKs. By simply updating the URL in your Kafka client library, you can begin streaming immediately, ensuring that you never have to compromise between reliability and cost-effectiveness again. Additionally, this flexibility fosters an environment where innovation can thrive without the constraints of traditional infrastructure.
  • 26
    Decodable Reviews

    Decodable

    Decodable

    $0.20 per task per hour
    Say goodbye to the complexities of low-level coding and integrating intricate systems. With SQL, you can effortlessly construct and deploy data pipelines in mere minutes. This data engineering service empowers both developers and data engineers to easily create and implement real-time data pipelines tailored for data-centric applications. The platform provides ready-made connectors for various messaging systems, storage solutions, and database engines, simplifying the process of connecting to and discovering available data. Each established connection generates a stream that facilitates data movement to or from the respective system. Utilizing Decodable, you can design your pipelines using SQL, where streams play a crucial role in transmitting data to and from your connections. Additionally, streams can be utilized to link pipelines, enabling the management of even the most intricate processing tasks. You can monitor your pipelines to ensure a steady flow of data and create curated streams for collaborative use by other teams. Implement retention policies on streams to prevent data loss during external system disruptions, and benefit from real-time health and performance metrics that keep you informed about the operation's status, ensuring everything is running smoothly. Ultimately, Decodable streamlines the entire data pipeline process, allowing for greater efficiency and quicker results in data handling and analysis.
  • 27
    ClickHouse Reviews
    ClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads.
  • 28
    Confluent Reviews
    Achieve limitless data retention for Apache Kafka® with Confluent, empowering you to be infrastructure-enabled rather than constrained by outdated systems. Traditional technologies often force a choice between real-time processing and scalability, but event streaming allows you to harness both advantages simultaneously, paving the way for innovation and success. Have you ever considered how your rideshare application effortlessly analyzes vast datasets from various sources to provide real-time estimated arrival times? Or how your credit card provider monitors millions of transactions worldwide, promptly alerting users to potential fraud? The key to these capabilities lies in event streaming. Transition to microservices and facilitate your hybrid approach with a reliable connection to the cloud. Eliminate silos to ensure compliance and enjoy continuous, real-time event delivery. The possibilities truly are limitless, and the potential for growth is unprecedented.
  • 29
    Amazon Kinesis Reviews
    Effortlessly gather, manage, and scrutinize video and data streams as they occur. Amazon Kinesis simplifies the process of collecting, processing, and analyzing streaming data in real-time, empowering you to gain insights promptly and respond swiftly to emerging information. It provides essential features that allow for cost-effective processing of streaming data at any scale while offering the adaptability to select the tools that best align with your application's needs. With Amazon Kinesis, you can capture real-time data like video, audio, application logs, website clickstreams, and IoT telemetry, facilitating machine learning, analytics, and various other applications. This service allows you to handle and analyze incoming data instantaneously, eliminating the need to wait for all data to be collected before starting the processing. Moreover, Amazon Kinesis allows for the ingestion, buffering, and real-time processing of streaming data, enabling you to extract insights in a matter of seconds or minutes, significantly reducing the time it takes compared to traditional methods. Overall, this capability revolutionizes how businesses can respond to data-driven opportunities as they arise.
  • 30
    Samza Reviews

    Samza

    Apache Software Foundation

    Samza enables the development of stateful applications that can handle real-time data processing from various origins, such as Apache Kafka. Proven to perform effectively at scale, it offers versatile deployment choices, allowing execution on YARN or as an independent library. With the capability to deliver remarkably low latencies and high throughput, Samza provides instantaneous data analysis. It can manage multiple terabytes of state through features like incremental checkpoints and host-affinity, ensuring efficient data handling. Additionally, Samza's operational simplicity is enhanced by its deployment flexibility—whether on YARN, Kubernetes, or in standalone mode. Users can leverage the same codebase to seamlessly process both batch and streaming data, which streamlines development efforts. Furthermore, Samza integrates with a wide range of data sources, including Kafka, HDFS, AWS Kinesis, Azure Event Hubs, key-value stores, and ElasticSearch, making it a highly adaptable tool for modern data processing needs.
  • 31
    Amazon Managed Service for Apache Flink Reviews
    A vast number of users leverage Amazon Managed Service for Apache Flink to execute their stream processing applications. This service allows you to analyze and transform streaming data in real-time through Apache Flink while seamlessly integrating with other AWS offerings. There is no need to manage servers or clusters, nor is there a requirement to establish computing and storage infrastructure. You are billed solely for the resources you consume. You can create and operate Apache Flink applications without the hassle of infrastructure setup and resource management. Experience the capability to process vast amounts of data at incredible speeds with subsecond latencies, enabling immediate responses to events. With Multi-AZ deployments and APIs for application lifecycle management, you can deploy applications that are both highly available and durable. Furthermore, you can develop solutions that efficiently transform and route data to services like Amazon Simple Storage Service (Amazon S3) and Amazon OpenSearch Service, among others, enhancing your application's functionality and reach. This service simplifies the complexities of stream processing, allowing developers to focus on building innovative solutions.
  • 32
    Tinybird Reviews

    Tinybird

    Tinybird

    $0.07 per processed GB
    Utilize Pipes to query and manipulate your data seamlessly, a novel method for linking SQL queries that draws inspiration from Python Notebooks. This approach aims to streamline complexity while maintaining optimal performance. By dividing your query into various nodes, you enhance both development and maintenance processes. With just a single click, you can activate your API endpoints that are ready for production use. Transformations happen instantly, ensuring you always have access to the most current data. You can securely share access to your data with just one click, providing quick and reliable results. In addition to offering monitoring capabilities, Tinybird is designed to scale effortlessly, so you need not be concerned about unexpected traffic surges. Visualize transforming any Data Stream or CSV file into a fully secured real-time analytics API endpoint in mere minutes. We advocate for high-frequency decision-making across every sector, including retail, manufacturing, telecommunications, government, advertising, entertainment, healthcare, and financial services, making data-driven insights accessible to all types of organizations. Our commitment is to empower businesses to make informed decisions swiftly, ensuring they stay ahead in an ever-evolving landscape.
  • 33
    Google Cloud Datastream Reviews
    A user-friendly, serverless service for change data capture and replication that provides access to streaming data from a variety of databases including MySQL, PostgreSQL, AlloyDB, SQL Server, and Oracle. This solution enables near real-time analytics in BigQuery, allowing for quick insights and decision-making. With a straightforward setup that includes built-in secure connectivity, organizations can achieve faster time-to-value. The platform is designed to scale automatically, eliminating the need for resource provisioning or management. Utilizing a log-based mechanism, it minimizes the load and potential disruptions on source databases, ensuring smooth operation. This service allows for reliable data synchronization across diverse databases, storage systems, and applications, while keeping latency low and reducing any negative impact on source performance. Organizations can quickly activate the service, enjoying the benefits of a scalable solution with no infrastructure overhead. Additionally, it facilitates seamless data integration across the organization, leveraging the power of Google Cloud services such as BigQuery, Spanner, Dataflow, and Data Fusion, thus enhancing overall operational efficiency and data accessibility. This comprehensive approach not only streamlines data processes but also empowers teams to make informed decisions based on timely data insights.
  • 34
    Informatica Data Engineering Streaming Reviews
    Informatica's AI-driven Data Engineering Streaming empowers data engineers to efficiently ingest, process, and analyze real-time streaming data, offering valuable insights. The advanced serverless deployment feature, coupled with an integrated metering dashboard, significantly reduces administrative burdens. With CLAIRE®-enhanced automation, users can swiftly construct intelligent data pipelines that include features like automatic change data capture (CDC). This platform allows for the ingestion of thousands of databases, millions of files, and various streaming events. It effectively manages databases, files, and streaming data for both real-time data replication and streaming analytics, ensuring a seamless flow of information. Additionally, it aids in the discovery and inventorying of all data assets within an organization, enabling users to intelligently prepare reliable data for sophisticated analytics and AI/ML initiatives. By streamlining these processes, organizations can harness the full potential of their data assets more effectively than ever before.
  • 35
    Qubole Reviews
    Qubole stands out as a straightforward, accessible, and secure Data Lake Platform tailored for machine learning, streaming, and ad-hoc analysis. Our comprehensive platform streamlines the execution of Data pipelines, Streaming Analytics, and Machine Learning tasks across any cloud environment, significantly minimizing both time and effort. No other solution matches the openness and versatility in handling data workloads that Qubole provides, all while achieving a reduction in cloud data lake expenses by more than 50 percent. By enabling quicker access to extensive petabytes of secure, reliable, and trustworthy datasets, we empower users to work with both structured and unstructured data for Analytics and Machine Learning purposes. Users can efficiently perform ETL processes, analytics, and AI/ML tasks in a seamless workflow, utilizing top-tier open-source engines along with a variety of formats, libraries, and programming languages tailored to their data's volume, diversity, service level agreements (SLAs), and organizational regulations. This adaptability ensures that Qubole remains a preferred choice for organizations aiming to optimize their data management strategies while leveraging the latest technological advancements.
  • 36
    IBM Streams Reviews
    IBM Streams analyzes a diverse array of streaming data, including unstructured text, video, audio, geospatial data, and sensor inputs, enabling organizations to identify opportunities and mitigate risks while making swift decisions. By leveraging IBM® Streams, users can transform rapidly changing data into meaningful insights. This platform evaluates various forms of streaming data, empowering organizations to recognize trends and threats as they arise. When integrated with other capabilities of IBM Cloud Pak® for Data, which is founded on a flexible and open architecture, it enhances the collaborative efforts of data scientists in developing models to apply to stream flows. Furthermore, it facilitates the real-time analysis of vast datasets, ensuring that deriving actionable value from your data has never been more straightforward. With these tools, organizations can harness the full potential of their data streams for improved outcomes.
  • 37
    Spark Streaming Reviews

    Spark Streaming

    Apache Software Foundation

    Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.
  • 38
    IBM Event Streams Reviews
    IBM Event Streams is a comprehensive event streaming service based on Apache Kafka, aimed at assisting businesses in managing and reacting to real-time data flows. It offers features such as machine learning integration, high availability, and secure deployment in the cloud, empowering organizations to develop smart applications that respond to events in real time. The platform is designed to accommodate multi-cloud infrastructures, disaster recovery options, and geo-replication, making it particularly suitable for critical operational tasks. By facilitating the construction and scaling of real-time, event-driven solutions, IBM Event Streams ensures that data is processed with speed and efficiency, ultimately enhancing business agility and responsiveness. As a result, organizations can harness the power of real-time data to drive innovation and improve decision-making processes.
  • 39
    QuasarDB Reviews
    QuasarDB, the core of Quasar's intelligence, is an advanced, distributed, column-oriented database management system specifically engineered for high-performance timeseries data handling, enabling real-time processing for massive petascale applications. It boasts up to 20 times less disk space requirement, making it exceptionally efficient. The unmatched ingestion and compression features of QuasarDB allow for up to 10,000 times quicker feature extraction. This database can perform real-time feature extraction directly from raw data via an integrated map/reduce query engine, a sophisticated aggregation engine that utilizes SIMD capabilities of contemporary CPUs, and stochastic indexes that consume minimal disk storage. Its ultra-efficient resource utilization, ability to integrate with object storage solutions like S3, innovative compression methods, and reasonable pricing structure make it the most economical timeseries solution available. Furthermore, QuasarDB is versatile enough to operate seamlessly across various platforms, from 32-bit ARM devices to high-performance Intel servers, accommodating both Edge Computing environments and traditional cloud or on-premises deployments. Its scalability and efficiency make it an ideal choice for businesses aiming to harness the full potential of their data in real-time.
  • 40
    Apache Storm Reviews

    Apache Storm

    Apache Software Foundation

    Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available.
  • 41
    Oracle Cloud Infrastructure Streaming Reviews
    The Streaming service is a real-time, serverless platform for event streaming that is compatible with Apache Kafka, designed specifically for developers and data scientists. It is seamlessly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. Furthermore, the service offers ready-made integrations with numerous third-party products spanning various categories, including DevOps, databases, big data, and SaaS applications. Data engineers can effortlessly establish and manage extensive big data pipelines. Oracle takes care of all aspects of infrastructure and platform management for event streaming, which encompasses provisioning, scaling, and applying security updates. Additionally, by utilizing consumer groups, Streaming effectively manages state for thousands of consumers, making it easier for developers to create applications that can scale efficiently. This comprehensive approach not only streamlines the development process but also enhances overall operational efficiency.
  • 42
    Apache Pinot Reviews
    Pinot is built to efficiently handle OLAP queries on static data with minimal latency. It incorporates various pluggable indexing methods, including Sorted Index, Bitmap Index, and Inverted Index. While it currently lacks support for joins, this limitation can be mitigated by utilizing Trino or PrestoDB for querying purposes. The system offers an SQL-like language that enables selection, aggregation, filtering, grouping, ordering, and distinct queries on datasets. It comprises both offline and real-time tables, with real-time tables being utilized to address segments lacking offline data. Additionally, users can tailor the anomaly detection process and notification mechanisms to accurately identify anomalies. This flexibility ensures that users can maintain data integrity and respond proactively to potential issues.
  • 43
    Baidu AI Cloud Stream Computing Reviews
    Baidu Stream Computing (BSC) offers the ability to process real-time streaming data with minimal latency, impressive throughput, and high precision. It seamlessly integrates with Spark SQL, allowing for complex business logic to be executed via SQL statements, which enhances usability. Users benefit from comprehensive lifecycle management of their streaming computing tasks. Additionally, BSC deeply integrates with various Baidu AI Cloud storage solutions, such as Baidu Kafka, RDS, BOS, IOT Hub, Baidu ElasticSearch, TSDB, and SCS, serving as both upstream and downstream components in the stream computing ecosystem. Moreover, it provides robust job monitoring capabilities, enabling users to track performance indicators and establish alarm rules to ensure job security, thereby enhancing the overall reliability of the system. This level of integration and monitoring makes BSC a powerful tool for businesses looking to leverage real-time data processing effectively.
  • 44
    Apache Beam Reviews

    Apache Beam

    Apache Software Foundation

    Batch and streaming data processing can be streamlined effortlessly. With the capability to write once and run anywhere, it is ideal for mission-critical production tasks. Beam allows you to read data from a wide variety of sources, whether they are on-premises or cloud-based. It seamlessly executes your business logic across both batch and streaming scenarios. The outcomes of your data processing efforts can be written to the leading data sinks available in the market. This unified programming model simplifies operations for all members of your data and application teams. Apache Beam is designed for extensibility, with frameworks like TensorFlow Extended and Apache Hop leveraging its capabilities. You can run pipelines on various execution environments (runners), which provides flexibility and prevents vendor lock-in. The open and community-driven development model ensures that your applications can evolve and adapt to meet specific requirements. This adaptability makes Beam a powerful choice for organizations aiming to optimize their data processing strategies.
  • 45
    Oxla Reviews

    Oxla

    Oxla

    $50 per CPU core / monthly
    Designed specifically for optimizing compute, memory, and storage, Oxla serves as a self-hosted data warehouse that excels in handling large-scale, low-latency analytics while providing strong support for time-series data. While cloud data warehouses may suit many, they are not universally applicable; as operations expand, the ongoing costs of cloud computing can surpass initial savings on infrastructure, particularly in regulated sectors that demand comprehensive data control beyond mere VPC and BYOC setups. Oxla surpasses both traditional and cloud-based warehouses by maximizing efficiency, allowing for the scalability of expanding datasets with predictable expenses, whether on-premises or in various cloud environments. Deployment, execution, and maintenance of Oxla can be easily managed using Docker and YAML, enabling a range of workloads to thrive within a singular, self-hosted data warehouse. In this way, Oxla provides a tailored solution for organizations seeking both efficiency and control in their data management strategies.