Best TigerGraph Alternatives in 2025
Find the top alternatives to TigerGraph currently available. Compare ratings, reviews, pricing, and features of TigerGraph alternatives in 2025. Slashdot lists the best TigerGraph alternatives on the market that offer competing products that are similar to TigerGraph. Sort through TigerGraph alternatives below to make the best choice for your needs
-
1
Neo4j
Neo4j
Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database. -
2
MongoDB
MongoDB
Free 21 RatingsMongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges. -
3
InfiniteGraph
Objectivity
InfiniteGraph is a massively scalable graph database specifically designed to excel at high-speed ingest of massive volumes of data (billions of nodes and edges per hour) while supporting complex queries. InfiniteGraph can seamlessly distribute connected graph data across a global enterprise. InfiniteGraph is a schema-based graph database that supports highly complex data models. It also has an advanced schema evolution capability that allows you to modify and evolve the schema of an existing database. InfiniteGraph’s Placement Management Capability allows you to optimize the placement of data items resulting in tremendous performance improvements in both query and ingest. InfiniteGraph has client-side caching which caches frequently used node and edges. This can allow InfiniteGraph to perform like an in-memory graph database. InfiniteGraph's DO query language enables complex "beyond graph" queries not supported by other graph databases. -
4
Objectivity/DB
Objectivity, Inc.
See Pricing Details... 1 RatingObjectivity/DB (or Object Database Management System) is a distributed, highly scalable, high-performance, and highly scalable Object Database (ODBMS). It excels at complex data handling, including many types of connections between objects as well as many variants. Objectivity/DB can also be used as a graph database that is highly scalable and high-performance. Its DO query language allows for standard data retrieval queries and high-performance path-based navigational inquiries. Objectivity/DB is a distributed data base that presents a single logical view of its managed data. Data can be hosted on one machine or distributed over up to 65,000 machines. Machines can be connected to one another. Objectivity/DB can be used on 32- or 64-bit processors that run Windows, Linux, and Mac OS X. APIs are C++, C# Java, Python, and Java. All platforms and languages are interoperable. A C++ program on Linux can store objects and a Java program on Mac OS X can read them. -
5
ArangoDB
ArangoDB
Natively store data for graphs, documents and search needs. One query language allows for feature-rich access. You can map data directly to the database and access it using the best patterns for the job: traversals, joins search, ranking geospatial, aggregateions - you name them. Polyglot persistence without the cost. You can easily design, scale, and adapt your architectures to meet changing needs with less effort. Combine the flexibility and power of JSON with graph technology to extract next-generation features even from large datasets. -
6
Amazon Neptune
Amazon
Amazon Neptune is a robust and efficient fully managed graph database service designed to facilitate the development and operation of applications that utilize intricately connected datasets. At its core lies a specially designed, high-performance graph database engine that excels in storing vast amounts of relational data and performing queries with minimal delay. Neptune accommodates widely recognized graph models, such as Property Graph and the W3C's RDF, alongside their corresponding query languages, Apache TinkerPop Gremlin and SPARQL, enabling seamless creation of queries that adeptly traverse complex datasets. This service is instrumental in various graph-related applications, including systems for recommendation, fraud detection, knowledge representation, drug research, and cybersecurity. It also empowers users to proactively recognize and examine IT infrastructure through a comprehensive security framework. Moreover, it allows for the visualization of all infrastructure components, aiding in the planning, forecasting, and risk mitigation processes. By utilizing Neptune, organizations can craft graph queries that detect identity fraud patterns in near-real-time, particularly in financial transactions and purchases, enhancing their overall security measures. -
7
Dgraph
Hypermode
Dgraph is an open-source, low-latency, high throughput native and distributed graph database. DGraph is designed to scale easily to meet the needs for small startups and large companies with huge amounts of data. It can handle terabytes structured data on commodity hardware with low latency to respond to user queries. It addresses business needs and can be used in cases that involve diverse social and knowledge networks, real-time recommendation engines and semantic search, pattern matching, fraud detection, serving relationship information, and serving web applications. -
8
AllegroGraph
Franz Inc.
AllegroGraph is a revolutionary solution that allows infinite data integration. It uses a patented approach that unifies all data and siloed information into an Entity Event Knowledge Graph solution that supports massive big data analytics. AllegroGraph uses unique federated sharding capabilities to drive 360-degree insights, and enable complex reasoning across a distributed Knowledge Graph. AllegroGraph offers users an integrated version Gruff, a browser-based graph visualization tool that allows you to explore and discover connections within enterprise Knowledge Graphs. Franz's Knowledge Graph Solution offers both technology and services to help build industrial strength Entity Event Knowledge Graphs. It is based on the best-of-class products, tools, knowledge, skills, and experience. -
9
Grakn
Grakn Labs
The foundation of creating intelligent systems lies in the database, and Grakn serves as a sophisticated knowledge graph database. It features an incredibly user-friendly and expressive data schema that allows for the definition of hierarchies, hyper-entities, hyper-relations, and rules to establish detailed knowledge models. With its intelligent language, Grakn executes logical inferences on data types, relationships, attributes, and intricate patterns in real-time across distributed and stored data. It also offers built-in distributed analytics algorithms, such as Pregel and MapReduce, which can be accessed using straightforward queries within the language. The system provides a high level of abstraction over low-level patterns, simplifying the expression of complex constructs while optimizing query execution automatically. By utilizing Grakn KGMS and Workbase, enterprises can effectively scale their knowledge graphs. Furthermore, this distributed database is engineered to function efficiently across a network of computers through techniques like partitioning and replication, ensuring seamless scalability and performance. -
10
Fauna
Fauna
FreeFauna is a data API that supports rich clients with serverless backends. It provides a web-native interface that supports GraphQL, custom business logic, frictionless integration to the serverless ecosystem, and a multi-cloud architecture that you can trust and grow with. -
11
Nebula Graph
vesoft
Designed specifically for handling super large-scale graphs with latency measured in milliseconds, this graph database continues to engage with the community for its preparation, promotion, and popularization. Nebula Graph ensures that access is secured through role-based access control, allowing only authenticated users. The database supports various types of storage engines and its query language is adaptable, enabling the integration of new algorithms. By providing low latency for both read and write operations, Nebula Graph maintains high throughput, effectively simplifying even the most intricate data sets. Its shared-nothing distributed architecture allows for linear scalability, making it an efficient choice for expanding businesses. The SQL-like query language is not only user-friendly but also sufficiently robust to address complex business requirements. With features like horizontal scalability and a snapshot capability, Nebula Graph assures high availability, even during failures. Notably, major internet companies such as JD, Meituan, and Xiaohongshu have successfully implemented Nebula Graph in their production environments, showcasing its reliability and performance in real-world applications. This widespread adoption highlights the database's effectiveness in meeting the demands of large-scale data management. -
12
Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
-
13
Apache Cassandra
Apache Software Foundation
1 RatingApache Cassandra is an ideal database solution for situations that require both high scalability and availability while maintaining optimal performance. Its linear scalability and established fault-tolerance capabilities, whether on standard hardware or cloud environments, position it as a top-tier choice for essential data management. Additionally, Cassandra excels in its ability to replicate data across various datacenters, ensuring minimal latency for users and offering reassurance by safeguarding against regional failures. This unique combination of features makes Cassandra a reliable option for businesses that prioritize resilience and efficiency in their data operations. -
14
JanusGraph
JanusGraph
JanusGraph stands out as a highly scalable graph database designed for efficiently storing and querying extensive graphs that can comprise hundreds of billions of vertices and edges, all managed across a cluster of multiple machines. This project, which operates under The Linux Foundation, boasts contributions from notable organizations such as Expero, Google, GRAKN.AI, Hortonworks, IBM, and Amazon. It offers both elastic and linear scalability to accommodate an expanding data set and user community. Key features include robust data distribution and replication methods to enhance performance and ensure fault tolerance. Additionally, JanusGraph supports multi-datacenter high availability and provides hot backups for data security. All these capabilities are available without any associated costs, eliminating the necessity for purchasing commercial licenses, as it is entirely open source and governed by the Apache 2 license. Furthermore, JanusGraph functions as a transactional database capable of handling thousands of simultaneous users performing complex graph traversals in real time. It ensures support for both ACID properties and eventual consistency, catering to various operational needs. Beyond online transactional processing (OLTP), JanusGraph also facilitates global graph analytics (OLAP) through its integration with Apache Spark, making it a versatile tool for data analysis and visualization. This combination of features makes JanusGraph a powerful choice for organizations looking to leverage graph data effectively. -
15
AnzoGraph DB
Cambridge Semantics
AnzoGraph DB boasts a comprehensive range of analytical features that can significantly improve your analytical infrastructure. This video showcases how AnzoGraph DB functions as a Massively Parallel Processing (MPP) native graph database designed specifically for data harmonization and analytical tasks. It is a horizontally scalable graph database tailored for online analytics and the challenges of data harmonization. Tackle the complexities of linked data and data harmonization with AnzoGraph DB, a leading player in the analytical graph database market. The database delivers robust online performance suitable for enterprise-level graph applications. AnzoGraph DB supports familiar semantic graph languages like SPARQL*/OWL while also accommodating Labeled Property Graphs (LPGs). With access to diverse analytical, machine learning, and data science tools, users can uncover new insights at an unmatched speed and scale. Moreover, it allows you to prioritize context and relationships among data points in your analyses, featuring ultra-fast data loading alongside rapid analytical query execution. This combination of capabilities makes AnzoGraph DB an essential tool for organizations looking to leverage their data effectively. -
16
RushDB
RushDB
$9/month RushDB is an innovative, open-source graph database that requires no configuration and rapidly converts JSON and CSV files into a fully normalized, queryable Neo4j graph, all while avoiding the complexities associated with schema design, migrations, and manual indexing. Tailored for contemporary applications as well as AI and machine learning workflows, RushDB offers an effortless experience for developers, merging the adaptability of NoSQL with the organized capabilities of relational databases. By incorporating automatic data normalization, ensuring ACID compliance, and featuring a robust API, RushDB streamlines the often challenging processes of data ingestion, relationship management, and query optimization, allowing developers to direct their energies toward building applications rather than managing databases. Some notable features include: 1. Instantaneous data ingestion without the need for configuration 2. Storage and querying capabilities powered by graph technology 3. Support for ACID transactions and seamless schema evolution 4. A developer-friendly API that facilitates querying akin to an SDK 5. High-performance capabilities for search and analytics 6. Flexibility to be self-hosted or cloud-compatible. This combination of features positions RushDB as a transformative solution in the realm of data management. -
17
Blazegraph
Blazegraph
Blazegraph™ DB is an exceptionally high-performance graph database that offers support for both Blueprints and RDF/SPARQL APIs, allowing for the management of up to 50 billion edges on a single system. This database is currently utilized by several Fortune 500 companies, including industry leaders like EMC and Autodesk, among others. It plays a significant role in critical Precision Medicine applications and is widely adopted in life sciences. Additionally, Blazegraph is heavily employed in cyber analytics for various commercial and government sectors. The database also serves as the backbone for the Wikimedia Foundation's Wikidata Query Service, demonstrating its versatility and reliability. Users can opt for different distributions, including an executable jar, war file, or tar.gz format, making it accessible for various deployment scenarios. Designed with user-friendliness in mind, Blazegraph is straightforward to set up, although it comes without SSL or authentication by default, which is a consideration for new users. For those deploying in production environments, we highly advise activating SSL, enabling authentication, and configuring the network properly to ensure security. Resources and links are available below to assist you in these configurations for optimal operation. -
18
PolarDB-X
Alibaba Cloud
$10,254.44 per yearPolarDB-X has proven its reliability during the Tmall Double 11 shopping events and has assisted clients in various sectors, including finance, logistics, energy, e-commerce, and public services, in overcoming their business obstacles. It offers scalable storage solutions that can expand linearly to accommodate petabyte-scale demands, thereby eliminating the constraints associated with traditional standalone databases. Additionally, it features massively parallel processing (MPP) capabilities that greatly enhance the efficiency of performing complex analyses and executing queries on large datasets. Furthermore, it employs sophisticated algorithms to distribute data across multiple storage nodes, which effectively minimizes the amount of data held within individual tables. This advanced architecture not only optimizes performance but also ensures that businesses can handle their data needs flexibly and efficiently. -
19
Greenplum
Greenplum Database
Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation. -
20
GraphDB
Ontotext
*GraphDB allows the creation of large knowledge graphs by linking diverse data and indexing it for semantic search. * GraphDB is a robust and efficient graph database that supports RDF and SPARQL. The GraphDB database supports a highly accessible replication cluster. This has been demonstrated in a variety of enterprise use cases that required resilience for data loading and query answering. Visit the GraphDB product page for a quick overview and a link to download the latest releases. GraphDB uses RDF4J to store and query data. It also supports a wide range of query languages (e.g. SPARQL and SeRQL), and RDF syntaxes such as RDF/XML and Turtle. -
21
Yugabyte
Yugabyte
Introducing a premier high-performance distributed SQL database that is open source and designed specifically for cloud-native environments, ideal for powering applications on a global internet scale. Experience minimal latency, often in the single-digit milliseconds, allowing you to create incredibly fast cloud applications by executing queries directly from the database itself. Handle immense workloads effortlessly, achieving millions of transactions per second and accommodating several terabytes of data on each node. With geo-distribution capabilities, you can deploy your database across various regions and cloud platforms, utilizing synchronous or multi-master replication for optimal performance. Tailored for modern cloud-native architectures, YugabyteDB accelerates the development, deployment, and management of applications like never before. Enjoy enhanced developer agility by tapping into the full capabilities of PostgreSQL-compatible SQL alongside distributed ACID transactions. Maintain resilient services with assured continuous availability, even amidst failures in compute, storage, or network infrastructure. Scale your resources on demand, easily adding or removing nodes as needed, and eliminate the necessity for over-provisioned clusters. Additionally, benefit from significantly reduced user latency, ensuring a seamless experience for your app users. -
22
Aster SQL-GR
Teradata
Experience robust graph analytics effortlessly with Aster SQL-GR™, a specialized graph processing engine designed for advanced Graph Analysis. This tool simplifies the resolution of intricate business challenges, including social network and influencer analysis, fraud detection, supply chain optimization, network analysis, threat identification, and money laundering, which offer greater insights than basic graph navigation. Built upon the Bulk Synchronous Processing (BSP) model, SQL-GR leverages massively iterative, distributed, and parallel processing techniques to tackle complex graph-related issues effectively. Its enormous scalability stems from its BSP framework and the utilization of Teradata Aster’s massively parallel processing (MPP) architecture, allowing for the distribution of graph computations across numerous servers or nodes. SQL-GR operates independently of memory constraints and does not rely on a singular server or node, enabling users to harness extraordinary power and speed for conducting sophisticated graph analyses on a large data scale, ultimately leading to better decision-making and enhanced operational efficiency. With its unmatched ability to handle vast datasets, SQL-GR elevates the standard for graph analytics in modern business environments. -
23
Graphlytic
Demtec
19 EUR/month Graphlytic is a web-based BI platform that allows knowledge graph visualization and analysis. Interactively explore the graph and look for patterns using the Cypher query language or query templates for non-technical users. Users can also use filters to find answers to any graph question. The graph visualization provides deep insights into industries such as scientific research and anti-fraud investigation. Even users with little knowledge of graph theory can quickly explore the data. Cytoscape.js allows graph rendering. It can render tens to thousands of nodes and hundreds upon thousands of relationships. The application is available in three formats: Desktop, Cloud, or Server. Graphlytic Desktop is a Neo4j Desktop app that can be installed in just a few mouse clicks. Cloud instances are great for small teams who don't want or need to worry about installing and need to be up and running quickly. -
24
HCL OneDB
HCL Software
Create and deploy distributed, database-driven enterprise applications that achieve optimal levels of availability, scalability, and performance, all while being entirely cloud native. Whether your enterprise is just embarking on its cloud native journey or is actively implementing a multi-cloud strategy, OneDB provides the necessary flexibility, reliability, and user-friendliness to fulfill your application's requirements. The process of extracting valuable insights and actionable intelligence from data is significantly simplified through fully automated database management. This automation allows for a substantial decrease in the necessity for advanced technical skills when launching innovative ideas, enabling you to maintain a competitive edge. Ideal for application development, OneDB supports a wide range of interfaces and APIs, as well as extensive programming languages, ensuring developers have all the tools they need at their disposal. Furthermore, HCL delivers the most adaptable cloud native database available in today's market, making it a top choice for enterprises seeking robust solutions. With OneDB, organizations can effectively streamline their development processes while enjoying the benefits of a highly responsive and efficient database environment. -
25
Sparksee
Sparsity Technologies
Sparksee, which was previously referred to as DEX, optimizes both space and performance while maintaining a compact design that enables swift analysis of extensive networks. It supports a wide range of programming languages including .Net, C++, Python, Objective-C, and Java, making it versatile across various operating systems. The graph data is efficiently organized using bitmap data structures, achieving significant compression ratios. These bitmaps are divided into chunks that align with disk pages, enhancing input/output locality for better performance. By leveraging bitmaps, computations are executed using binary logic instructions that facilitate efficient processing in pipelined architectures. The system features complete native indexing, which ensures rapid access to all graph data structures. Node connections are also encoded as bitmaps, further reducing their storage footprint. Advanced I/O strategies are implemented to minimize the frequency of data pages being loaded into memory, ensuring optimal resource usage. Each unique value in the database is stored only once, effectively eliminating unnecessary redundancy, and contributing to overall efficiency. This combination of features makes Sparksee a powerful tool for handling large-scale graph data analyses. -
26
Graph Engine
Microsoft
Graph Engine (GE) is a powerful distributed in-memory data processing platform that relies on a strongly-typed RAM storage system paired with a versatile distributed computation engine. This RAM store functions as a high-performance key-value store that is accessible globally across a cluster of machines. By leveraging this RAM store, GE facilitates rapid random data access over extensive distributed datasets. Its ability to perform swift data exploration and execute distributed parallel computations positions GE as an ideal solution for processing large graphs. The engine effectively accommodates both low-latency online query processing and high-throughput offline analytics for graphs containing billions of nodes. Efficient data processing emphasizes the importance of schema, as strongly-typed data models are vital for optimizing storage, accelerating data retrieval, and ensuring clear data semantics. GE excels in the management of billions of runtime objects, regardless of their size, demonstrating remarkable efficiency. Even minor variations in object count can significantly impact performance, underscoring the importance of every byte. Moreover, GE offers rapid memory allocation and reallocation, achieving impressive memory utilization ratios that further enhance its capabilities. This makes GE not only efficient but also an invaluable tool for developers and data scientists working with large-scale data environments. -
27
CockroachDB
Cockroach Labs
1 RatingCockroachDB: Cloud-native distributed SQL. Your cloud applications deserve a cloud-native database. Cloud-based apps and services need a database that can scale across clouds, reduces operational complexity, and improves reliability. CockroachDB provides resilient, distributed SQL with ACID transactions. Data partitioned by geography is also available. Combining CockroachDB and orchestration tools such as Mesosphere DC/OS and Kubernetes to automate mission-critical applications can speed up operations. -
28
ClickHouse
ClickHouse
1 RatingClickHouse is an efficient, open-source OLAP database management system designed for high-speed data processing. Its column-oriented architecture facilitates the creation of analytical reports through real-time SQL queries. In terms of performance, ClickHouse outshines similar column-oriented database systems currently on the market. It has the capability to handle hundreds of millions to over a billion rows, as well as tens of gigabytes of data, on a single server per second. By maximizing the use of available hardware, ClickHouse ensures rapid query execution. The peak processing capacity for individual queries can exceed 2 terabytes per second, considering only the utilized columns after decompression. In a distributed environment, read operations are automatically optimized across available replicas to minimize latency. Additionally, ClickHouse features multi-master asynchronous replication, enabling deployment across various data centers. Each node operates equally, effectively eliminating potential single points of failure and enhancing overall reliability. This robust architecture allows organizations to maintain high availability and performance even under heavy workloads. -
29
TiDB Cloud
PingCAP
$0.95 per hourA cloud-native distributed HTAP database designed for seamless scaling and immediate analytics as a fully managed service, featuring a serverless tier that allows for the rapid deployment of the HTAP database within seconds. Scale transparently and elastically to hundreds of nodes for essential workloads without needing to modify your business logic. Leverage your existing SQL knowledge while preserving your relational structure and global ACID transactions, effortlessly managing hybrid workloads. The system comes with a powerful built-in analytics engine that enables operational data analysis without the requirement for ETL processes. Expand to hundreds of nodes while ensuring ACID compliance, all without the hassle of sharding or downtime interruptions. Data accuracy is upheld even with simultaneous updates to the same data source, making it reliable for high-demand environments. TiDB’s MySQL compatibility enhances productivity and accelerates your applications' time-to-market, while also facilitating the easy migration of data from current MySQL environments without necessitating code rewrites. This innovative solution streamlines your database management, allowing teams to focus on development rather than infrastructure concerns. -
30
Apache Ignite
Apache Ignite
Utilize Ignite as a conventional SQL database by employing JDBC and ODBC drivers, or by taking advantage of the native SQL APIs provided for various programming languages such as Java, C#, C++, and Python. Effortlessly perform operations like joining, grouping, aggregating, and ordering your data that is distributed both in-memory and on-disk. Enhance the performance of your current applications by a factor of 100 by integrating Ignite as an in-memory cache or data grid that interfaces with one or multiple external databases. Envision a caching solution that allows for SQL queries, transactional operations, and computational tasks. Develop cutting-edge applications capable of handling both transactional and analytical tasks by utilizing Ignite as a database that extends beyond just the limits of available memory. Ignite efficiently manages memory for frequently accessed data while offloading to disk for less frequently queried records. Execute custom code, even as small as a kilobyte, across massive datasets in the petabyte range. Transform your Ignite database into a powerful distributed supercomputer designed for swift calculations, intricate analytics, and advanced machine learning tasks. Ultimately, Ignite not only facilitates seamless data management but also empowers organizations to harness their data's potential for innovative solutions. -
31
Azure Cosmos DB
Microsoft
Azure Cosmos DB is a fully managed NoSQL database solution designed for contemporary application development, offering guaranteed response times in the single digits of milliseconds and an impressive availability rate of 99.999%, supported by service level agreements (SLAs). It features automatic scalability and supports open-source APIs compatible with MongoDB and Cassandra, ensuring developers can work with familiar tools. With its turnkey multi-master global distribution, users can experience rapid read and write operations from any location worldwide. Additionally, it enables organizations to decrease the time required to gain insights by facilitating near-real-time analytics and artificial intelligence on the operational data housed within the Azure Cosmos DB NoSQL database. Furthermore, Azure Synapse Link for Azure Cosmos DB provides a smooth integration with Azure Synapse Analytics, allowing for efficient data analysis without the need for data movement or compromising the performance of the operational data store. This combination of features makes Azure Cosmos DB a powerful choice for developers aiming for high performance and reliability in their applications. -
32
PuppyGraph
PuppyGraph
FreePuppyGraph allows you to effortlessly query one or multiple data sources through a cohesive graph model. Traditional graph databases can be costly, require extensive setup time, and necessitate a specialized team to maintain. They often take hours to execute multi-hop queries and encounter difficulties when managing datasets larger than 100GB. Having a separate graph database can complicate your overall architecture due to fragile ETL processes, ultimately leading to increased total cost of ownership (TCO). With PuppyGraph, you can connect to any data source, regardless of its location, enabling cross-cloud and cross-region graph analytics without the need for intricate ETLs or data duplication. By directly linking to your data warehouses and lakes, PuppyGraph allows you to query your data as a graph without the burden of constructing and maintaining lengthy ETL pipelines typical of conventional graph database configurations. There's no longer a need to deal with delays in data access or unreliable ETL operations. Additionally, PuppyGraph resolves scalability challenges associated with graphs by decoupling computation from storage, allowing for more efficient data handling. This innovative approach not only enhances performance but also simplifies your data management strategy. -
33
RecallGraph
RecallGraph
RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://blog.recallgraph.tech/never-lose-your-old-data-again. -
34
DataStax
DataStax
Introducing a versatile, open-source multi-cloud platform for contemporary data applications, built on Apache Cassandra™. Achieve global-scale performance with guaranteed 100% uptime while avoiding vendor lock-in. You have the flexibility to deploy on multi-cloud environments, on-premises infrastructures, or use Kubernetes. The platform is designed to be elastic and offers a pay-as-you-go pricing model to enhance total cost of ownership. Accelerate your development process with Stargate APIs, which support NoSQL, real-time interactions, reactive programming, as well as JSON, REST, and GraphQL formats. Bypass the difficulties associated with managing numerous open-source projects and APIs that lack scalability. This solution is perfect for various sectors including e-commerce, mobile applications, AI/ML, IoT, microservices, social networking, gaming, and other highly interactive applications that require dynamic scaling based on demand. Start your journey of creating modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Leverage REST, GraphQL, and JSON alongside your preferred full-stack framework. This platform ensures that your richly interactive applications are not only elastic but also ready to gain traction from the very first day, all while offering a cost-effective Apache Cassandra DBaaS that scales seamlessly and affordably as your needs evolve. With this innovative approach, developers can focus on building rather than managing infrastructure. -
35
Fluree
Fluree
Fluree is an immutable RDF graph database written in Clojure and adhering to W3C standards, supporting JSON and JSON-LD while accommodating various RDF ontologies. It operates with an immutable ledger that secures transactions with cryptographic integrity, alongside a rich RDF graph database capable of various queries. It employs SmartFunctions for enforcing data management rules, including identity and access management and data quality. Additionally, It boasts a scalable, cloud-native architecture utilizing a lightweight Java runtime, with individually scalable ledger and graph database components, embodying a "Data-Centric" ideology that treats data as a reusable asset independent of singular applications. -
36
Memgraph
Memgraph
Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data. -
37
Apache Geode
Apache
Create applications that operate at high speed and handle large volumes of data while dynamically adjusting to performance needs, regardless of scale. Leverage the distinctive capabilities of Apache Geode, which incorporates sophisticated methods for data replication, partitioning, and distributed computing. This platform offers a consistency model akin to that of a database, ensures reliable transaction handling, and features a shared-nothing architecture that supports minimal latency even during high concurrency scenarios. Data can be efficiently partitioned or duplicated across nodes, enabling scalable performance as demands increase. To ensure durability, the system maintains redundant in-memory copies alongside disk-based persistence solutions. Moreover, it supports rapid write-ahead logging (WAL) persistence, and its architecture is designed for expedited parallel recovery of individual nodes or entire clusters, thereby enhancing overall system resilience. This robust framework ultimately allows developers to build resilient applications capable of efficiently managing fluctuating workloads. -
38
Cayley
Cayley
Cayley is an open-source database tailored for Linked Data, drawing inspiration from the graph database that supports Google's Knowledge Graph, previously known as Freebase. This graph database is crafted for user-friendliness and adept at handling intricate data structures, featuring an integrated query editor, a visualizer, and a Read-Eval-Print Loop (REPL). It supports various query languages, including Gizmo, which is influenced by Gremlin, a GraphQL-like query language, and MQL, a streamlined version catering to Freebase enthusiasts. Cayley's modular architecture allows seamless integration with preferred programming languages and backend storage solutions, making it production-ready, thoroughly tested, and utilized by numerous companies for their operational tasks. Additionally, it is optimized for application use, demonstrating impressive performance metrics; for instance, testing has shown that it can effortlessly manage 134 million quads in LevelDB on consumer-grade hardware from 2014, with multi-hop intersection queries—such as finding films featuring both X and Y—executing in about 150 milliseconds. By default, Cayley is set up to operate in-memory, which is what the backend memstore refers to, thereby enhancing its speed and efficiency for data retrieval and manipulation. Overall, Cayley offers a powerful solution for those looking to leverage linked data in their applications. -
39
GridGain
GridGain Systems
This robust enterprise platform, built on Apache Ignite, delivers lightning-fast in-memory performance and extensive scalability for data-heavy applications, ensuring real-time access across various datastores and applications. Transitioning from Ignite to GridGain requires no code modifications, allowing for secure deployment of clusters on a global scale without experiencing any downtime. You can conduct rolling upgrades on your production clusters without affecting application availability, and replicate data across geographically dispersed data centers to balance workloads and mitigate the risk of outages in specific regions. Your data remains secure both at rest and in transit, while compliance with security and privacy regulations is guaranteed. Seamless integration with your organization’s existing authentication and authorization frameworks is straightforward, and comprehensive auditing of data and user activities can be enabled. Additionally, you can establish automated schedules for both full and incremental backups, ensuring that restoring your cluster to its most stable state is achievable through snapshots and point-in-time recovery. This platform not only promotes efficiency but also enhances resilience and security for all data operations. -
40
CrateDB
CrateDB
The enterprise database for time series, documents, and vectors. Store any type data and combine the simplicity and scalability NoSQL with SQL. CrateDB is a distributed database that runs queries in milliseconds regardless of the complexity, volume, and velocity. -
41
SingleStore
SingleStore
$0.69 per hour 1 RatingSingleStore, previously known as MemSQL, is a highly scalable and distributed SQL database that can operate in any environment. It is designed to provide exceptional performance for both transactional and analytical tasks while utilizing well-known relational models. This database supports continuous data ingestion, enabling operational analytics critical for frontline business activities. With the capacity to handle millions of events each second, SingleStore ensures ACID transactions and allows for the simultaneous analysis of vast amounts of data across various formats, including relational SQL, JSON, geospatial, and full-text search. It excels in data ingestion performance at scale and incorporates built-in batch loading alongside real-time data pipelines. Leveraging ANSI SQL, SingleStore offers rapid query responses for both current and historical data, facilitating ad hoc analysis through business intelligence tools. Additionally, it empowers users to execute machine learning algorithms for immediate scoring and conduct geoanalytic queries in real-time, thereby enhancing decision-making processes. Furthermore, its versatility makes it a strong choice for organizations looking to derive insights from diverse data types efficiently. -
42
eXtremeDB
McObject
What makes eXtremeDB platform independent? - Hybrid storage of data. Unlike other IMDS databases, eXtremeDB databases are all-in-memory or all-persistent. They can also have a mix between persistent tables and in-memory table. eXtremeDB's Active Replication Fabric™, which is unique to eXtremeDB, offers bidirectional replication and multi-tier replication (e.g. edge-to-gateway-to-gateway-to-cloud), compression to maximize limited bandwidth networks and more. - Row and columnar flexibility for time series data. eXtremeDB supports database designs which combine column-based and row-based layouts in order to maximize the CPU cache speed. - Client/Server and embedded. eXtremeDB provides data management that is fast and flexible wherever you need it. It can be deployed as an embedded system and/or as a clients/server database system. eXtremeDB was designed for use in resource-constrained, mission-critical embedded systems. Found in over 30,000,000 deployments, from routers to satellites and trains to stock market world-wide. -
43
InterSystems IRIS
InterSystems
23 RatingsInterSystems IRIS, a cloud-first data platform, is a multi-model transactional database management engine, application development platform, interoperability engine and open analytics platform. InterSystems IRIS offers a variety of APIs that allow you to work with transactional persistent data simultaneously. These include key-value, relational and object, document, and multidimensional. Data can be managed by SQL, Java, node.js, .NET, C++, Python, and native server-side ObjectScript language. InterSystems IRIS features an Interoperability engine as well as modules for building AI solutions. InterSystems IRIS features horizontal scalability (sharding and ECP), and High Availability features such as Business intelligence, transaction support and backup. -
44
BigchainDB
BigchainDB
BigchainDB functions as a database infused with blockchain features, offering high throughput, minimal latency, robust querying capabilities, decentralized governance, permanent data storage, and inherent asset support. It empowers developers and businesses to create blockchain proof-of-concepts, platforms, and applications through a blockchain database that caters to a vast array of sectors and applications. Instead of enhancing traditional blockchain technology, BigchainDB begins with a distributed database designed for big data and incorporates blockchain traits such as decentralized governance, immutability, and the capability to manage digital asset transfers. By eliminating any singular control point, it also removes the risk of a single point of failure, utilizing a federation of voting nodes to establish a peer-to-peer network. Users can execute any MongoDB query to explore the entirety of stored transactions, assets, metadata, and blocks, leveraging the capabilities of MongoDB itself. This innovative approach marries the best of both worlds, merging the speed of traditional databases with the security and reliability of blockchain technology. -
45
HarperDB
HarperDB
FreeHarperDB is an innovative platform that integrates database management, caching, application development, and streaming capabilities into a cohesive system. This allows businesses to efficiently implement global-scale back-end services with significantly reduced effort, enhanced performance, and cost savings compared to traditional methods. Users can deploy custom applications along with pre-existing add-ons, ensuring a high-throughput and ultra-low latency environment for their data needs. Its exceptionally fast distributed database offers vastly superior throughput rates than commonly used NoSQL solutions while maintaining unlimited horizontal scalability. Additionally, HarperDB supports real-time pub/sub communication and data processing through protocols like MQTT, WebSocket, and HTTP. This means organizations can leverage powerful data-in-motion functionalities without the necessity of adding extra services, such as Kafka, to their architecture. By prioritizing features that drive business growth, companies can avoid the complexities of managing intricate infrastructures. While you can’t alter the speed of light, you can certainly minimize the distance between your users and their data, enhancing overall efficiency and responsiveness. In doing so, HarperDB empowers businesses to focus on innovation and progress rather than getting bogged down by technical challenges. -
46
ScyllaDB
ScyllaDB
ScyllaDB serves as an ideal database solution for applications that demand high performance and minimal latency, catering specifically to data-intensive needs. It empowers teams to fully utilize the growing computing capabilities of modern infrastructures, effectively removing obstacles to scaling as data volumes expand. Distinct from other database systems, ScyllaDB stands out as a distributed NoSQL database that is completely compatible with both Apache Cassandra and Amazon DynamoDB, while incorporating significant architectural innovations that deliver outstanding user experiences at significantly reduced costs. Over 400 transformative companies, including Disney+ Hotstar, Expedia, FireEye, Discord, Zillow, Starbucks, Comcast, and Samsung, rely on ScyllaDB to tackle their most challenging database requirements. Furthermore, ScyllaDB is offered in various formats, including a free open-source version, a fully-supported enterprise solution, and a fully managed database-as-a-service (DBaaS) available across multiple cloud platforms, ensuring flexibility for diverse user needs. This versatility makes it an attractive choice for organizations looking to optimize their database performance. -
47
Oracle Spatial and Graph
Oracle
Graph databases, which are a key feature of Oracle's converged database solution, remove the necessity for establishing a distinct database and transferring data. This allows analysts and developers to conduct fraud detection in the banking sector, uncover relationships and links to data, and enhance traceability in smart manufacturing, all while benefiting from enterprise-level security, straightforward data ingestion, and robust support for various data workloads. The Oracle Autonomous Database incorporates Graph Studio, offering one-click setup, built-in tools, and advanced security measures. Graph Studio streamlines the management of graph data and facilitates the modeling, analysis, and visualization throughout the entire graph analytics lifecycle. Oracle supports both property and RDF knowledge graphs, making it easier to model relational data as graph structures. Additionally, interactive graph queries can be executed directly on the graph data or via a high-performance in-memory graph server, enabling efficient data processing and analysis. This integration of graph technology enhances the overall capabilities of data management within Oracle's ecosystem. -
48
TiDB
PingCAP
Open-source, cloud-native distributed SQL database that allows for elastic scale and real time analytics. TiDB is supported by a wealth open-source data migration tools within the ecosystem. This allows you to choose your own vendor without worrying about lock-in. TiDB was designed to scale SQL without compromising your application. HTAP database platform which enables real-time situation analysis and decision making on transactional data. It eliminates friction between IT goals and business goals. TiDB is ACID compliant and strongly consistent. TiDB can be used as a scaled-out MySQL database using familiar SQL syntaxes. TiDB automatically shards data so you don’t have to do this manually. To scale horizontally or elastically to support your business growth, you can add new nodes. TiDB automates the ETL process, and automatically recovers from errors. -
49
Apache Giraph
Apache Software Foundation
Apache Giraph serves as a scalable iterative graph processing framework designed to handle large datasets effectively. For instance, it is utilized by Facebook to perform analyses on the social graph created by user interactions and relationships. Initially developed as an open-source alternative to Pregel, which is Google's graph processing framework introduced in a 2010 publication, Giraph reflects the principles of the Bulk Synchronous Parallel model of distributed computing established by Leslie Valiant. In addition to the foundational Pregel features, Giraph incorporates enhancements such as master computation, sharded aggregators, edge-oriented input, and capabilities for out-of-core computation. The continuous evolution of Giraph, supported by a thriving global community, makes it an excellent option for tapping into the potential of structured datasets on a grand scale. Built on the Apache Hadoop ecosystem, Giraph effectively integrates with existing data processing workflows, further boosting its appeal among developers and data scientists alike. -
50
Apache Trafodion
Apache Software Foundation
FreeApache Trafodion serves as a webscale SQL-on-Hadoop platform, designed to facilitate transactional and operational workloads within the Apache Hadoop ecosystem. By leveraging the inherent scalability, elasticity, and adaptability of Hadoop, Trafodion enhances its capabilities to ensure transactional integrity, thereby allowing for the execution of innovative big data applications. It also offers comprehensive support for ANSI SQL language, along with JDBC and ODBC connectivity for clients operating on Linux and Windows systems. Trafodion guarantees distributed ACID transaction protection, which spans multiple statements, tables, and rows, and incorporates performance enhancements for OLTP workloads through both compile-time and run-time optimizations. The system is equipped to handle large data sets efficiently, supported by a parallel-aware query optimizer, and allows developers to utilize their existing SQL expertise, ultimately boosting productivity. Additionally, it ensures data consistency across numerous rows and tables through its distributed ACID transaction feature and maintains interoperability with current tools and applications, all while being neutral to both Hadoop and Linux distributions. This makes it a seamless addition to existing Hadoop infrastructure, further enhancing its versatility and functionality.