Best TerminusDB Alternatives in 2024

Find the top alternatives to TerminusDB currently available. Compare ratings, reviews, pricing, and features of TerminusDB alternatives in 2024. Slashdot lists the best TerminusDB alternatives on the market that offer competing products that are similar to TerminusDB. Sort through TerminusDB alternatives below to make the best choice for your needs

  • 1
    KgBase Reviews

    KgBase

    KgBase

    $19 per month
    KgBase (or Knowledge Graph Base) is a robust, collaborative database that allows for versioning, analytics, visualizations, and visualizations. KgBase allows anyone to create knowledge graphs and gain insights about their data. You can import your CSVs or spreadsheets or use our API to collaborate on data. KgBase allows you to create no-code knowledge graphs. Our easy-to-use UI lets users navigate the graph and display the results in tables and charts. You can play with your graph data. You can build your query and watch the results change in real-time. It's similar to writing query code in Cypher and Gremlin, but much easier. It's also fast. You can view your graph as a table. This allows you to view all results, regardless of their size. KgBase is great for large graphs (millions) as well as simple projects. You can either use the cloud or self-hosted and have extensive database support. You can introduce graphs to your organization by seeding graphs from a template. Any query results can be easily converted into a chart visualization.
  • 2
    Nebula Graph Reviews
    The graph database is designed for graphs up to super large scale with very low latency. We continue to work with the community to promote, popularize, and prepare the graph database. Nebula Graph allows only authenticated access through role-based access control. Nebula Graph can support multiple storage engines and the query language is extensible to support new algorithms. Nebula Graph offers low latency read/write while maintaining high throughput to simplify complex data sets. Nebula Graph's distributed, shared-nothing architecture allows for linear scaling. Nebula Graph's SQL query language is similar to SQL and can be used to address complex business requirements. Nebula Graph's horizontal scalability, snapshot feature and high availability guarantee that there will be no downtime. Nebula Graph has been used in production environments by large Internet companies such as JD, Meituan and Xiaohongshu.
  • 3
    Gigasheet Reviews
    Gigasheet is the big data spreadsheet that requires no set up, training, database or coding skills. No SQL or Python code, no IT infrastructure required to explore big data. Big data answers are available to anyone, even if they're not data scientists. Best of all, your first 3GB are free! Gigasheet is used by thousands of people and teams to gain insights in minutes, rather than hours or days. Anyone who can use a spreadsheet can access Gigasheet's big data and analysis capabilities. Sharing and collaboration tools make distributing huge data sets a snap. Gigasheet integrates with more than 135 SaaS platforms and databases.
  • 4
    xtendr Reviews
    xtendr unhides detailed, privacy-preserving insights across multiple independent data sources. Xtendr gives you access to data that was previously inaccessible and protects your data throughout its entire lifecycle. You can be confident in privacy and regulatory compliance. Xtendr is not just anonymity; it is the missing piece of multi-party data-sharing with true privacy protection. It is cryptography at work so you can reach your potential. The most advanced privacy-enhancing technology for data collaboration. xtendr has solved the cryptography problem of data sharing among parties who are distrustful of each other. Take your business to the next level with a data protection solution that is enterprise-grade and allows organizations to form data partnership while protecting sensitive data. Data is the currency of today's digital age. Some say that it is replacing crude oil as the most valuable resource in the world, but there is no doubt of its importance.
  • 5
    GUN Reviews
    Realtime, realtime, offline-first, graph database engine. You can store, load, and share the data you need in your app without worrying too much about servers, network calls, database access, or tracking offline changes. GUN is a simple, fast, and easy-to-use data sync and storage tool that runs wherever JavaScript does. GUN's goal is to let you concentrate on the data that must be stored, loaded, shared, and shared in your app. It doesn't need to worry about servers, database calls, tracking offline changes, concurrency conflicts, or monitoring network calls. This allows you to quickly build cool apps. GUN gives you the most powerful tools of the internet, decentralization and privacy. This allows you to reclaim the web and make the internet truly open and free. GUN is a database engine which runs on all JavaScript devices, including mobile devices and servers. It allows you to create the data system that you want.
  • 6
    Cayley Reviews
    Cayley is an open source database for Linked Data. It was inspired by Google's Knowledge Graph graph database (formerly Freebase). Cayley is an open source graph database that allows you to store complex data and makes it easy to use. Built-in query editor, visualizer, and REPL. Cayley supports multiple query languages, including Gizmo, a query engine inspired by Gremlin and GraphQL-inspired query languages, MQL, a simplified version for Freebase lovers, and MQL. Cayley is modular and easy to connect with your favorite programming languages. It can also be used by back-end stores. Cayley has been well tested and used by many companies for their production workloads. It is also fast and optimized for use in applications. Rough performance testing has shown that on 2014 consumer hardware, 134m quads of LevelDB are not a problem, and a multi-hop intersection query - films starring X or Y - takes 150ms. Cayley is set up to run in memory by default (that's what backendmemstore means).
  • 7
    Amazon Neptune Reviews
    Amazon Neptune is a fully managed graph database service that allows you to quickly and reliably build applications that can work with highly connected data sets. Amazon Neptune's core is a purpose-built graph database engine that can store billions of relationships and query the graph with only milliseconds latency. Amazon Neptune supports the popular graph models Property Graph, W3C's RDF, as well as their respective query languages Apache TinkerPop Gremlin, SPARQL. This allows you to quickly build queries that efficiently navigate large datasets. Neptune supports graph use cases like recommendation engines, fraud detection and knowledge graphs. It also powers network security and drug discovery.
  • 8
    RowShare Reviews

    RowShare

    RowShare

    $10.00/month/user
    Your online collaborative tool to automate data collection. RowShare is the new way to collaborate on spreadsheet data. Collect and centralize data. Real-time analysis and reports can be run in an easy, automated and secure way. Automate all data processing: collecting, centralizing, analyzing, sharing. All the repetitive and low-value tasks such as manual reminders, endless VLOOKUP( (), copy paste, replace or merge, etc. can be eliminated. Collaboration is possible without compromising confidentiality. Line by line, decide who can see what. You can either create your own spreadsheets, or you can use our pre-made templates. In just a few clicks, you can customize and adapt spredsheets to meet your specific needs. You can create seamless workflows yourself or with the assistance of our experts. You can monitor the progress of your data collection in real-time. Automatically generate the most current documents. Get accurate reports to make better and faster decisions.
  • 9
    Coginiti Reviews

    Coginiti

    Coginiti

    $189/user/year
    Coginiti is the AI-enabled enterprise Data Workspace that empowers everyone to get fast, consistent answers to any business questions. Coginiti helps you find and search for metrics that are approved for your use case, accelerating the lifecycle of analytic development from development to certification. Coginiti integrates the functionality needed to build, approve and curate analytics for reuse across all business domains, while adhering your data governance policies and standards. Coginiti’s collaborative data workspace is trusted by teams in the insurance, healthcare, financial services and retail/consumer packaged goods industries to deliver value to customers.
  • 10
    Claravine Reviews
    Claravine is changing the way global enterprises view data integrity. The Data Standards Cloud allows teams to connect, standardize, and control data across their organization. Claravine is used by leading brands to increase their control and ownership of their data, allowing them to make better decisions, provide better customer experiences, and increase ROI.
  • 11
    Narrative Reviews
    With your own data shop, create new revenue streams from the data you already have. Narrative focuses on the fundamental principles that make buying or selling data simpler, safer, and more strategic. You must ensure that the data you have access to meets your standards. It is important to know who and how the data was collected. Access new supply and demand easily for a more agile, accessible data strategy. You can control your entire data strategy with full end-to-end access to all inputs and outputs. Our platform automates the most labor-intensive and time-consuming aspects of data acquisition so that you can access new data sources in days instead of months. You'll only ever have to pay for what you need with filters, budget controls and automatic deduplication.
  • 12
    Halcyon Reviews
    HALCYON, a data collaboration platform, ensures that the right data is delivered at a timely manner. It connects all stakeholders to a central hub that allows them to share, validate, and approve engineering data. The data is then stored in an immutable file. HALCYON automates the collection of detailed engineering data and facilitates collaboration throughout the supply chain. HALCYON records all the activities that occur now in many different forms and sources. We bring them together into a rich central data environment that connects teams and their data. HALCYON, the world's first blockchain information management platform, creates a permanent digital gold thread of all information, decisions, and queries made during projects. It is easy to set up and then load, share, and take action on data from your data supply chain. Everyone is aware of what they need to do, and when it is possible to take action.
  • 13
    Einblick Reviews
    Einblick is the fastest and most collaborative method to analyze data, make predictions, and then deploy data apps. Our canvases dramatically change the data science workflows. They make it easier to clean, manipulate, and explore data in a new interface. Our platform is the only one that allows you to collaborate with your entire team in real-time. Let's make decision-making a team activity. Don't waste your time tuning models manually. AutoML's goal is to help you make clear predictions and identify key drivers quickly. Einblick combines common analytics functionality into simple-to-use operators that allow you to abstract repetitive tasks and get answers faster. Connect your data source to Snowflake, S3 buckets, or CSV files and you'll be able to get answers in minutes. You can create a list of customers that have been churned or are currently churned, and share everything you know about them. Find out the key factors that caused churn and how at-risk each customer is.
  • 14
    Hex Reviews

    Hex

    Hex

    $24 per user per month
    Hex combines the best of notebooks and BI into a seamless, collaborative interface. Hex is a modern Data Workspace. It makes it easy for you to connect to data and analyze it in collaborative SQL or Python-powered notebooks. You can also share work as interactive data apps or stories. The Projects page is your default landing page in Hex. You can quickly find the projects you have created and those you share with others. The outline gives you an easy-to-read overview of all cells in a project's Logic View. Each cell in the outline lists all variables it defines and any cells that return an output (chart cells or Input Parameters cells, etc.). Display a preview of the output. To jump to a specific position in the logic, you can click on any cell in the outline.
  • 15
    Boltic Reviews

    Boltic

    Boltic

    $249 per month
    Boltic makes it easy to create and orchestrate ETL Pipelines. Boltic allows you to extract, transform, and load multiple data sources into any destination, without having to write code. Build end-to-end pipelines with advanced transformations to get analytics-ready data. Integrate data using a list of over 100 pre-built Integrations. Join multiple data sources with just a few clicks, and you're ready to work in the cloud. Boltic's No Code Transformation or Script Engine can be used to create custom scripts for data exploration and cleaning. Invite team members to work together on a secure data operations platform in the cloud to solve organisational problems faster. Schedule ETL pipelines so that they run automatically at predefined intervals. This will make it easier to import, clean, transform, store, and share data. AI & ML can be used to track and analyze key metrics for business. Gain insights into your business and monitor potential issues or opportunities.
  • 16
    Zebra AI Reviews
    AI-powered Business Intelligence. Data modeling is no longer a hassle. Create sales dashboards to get insights and collaborate instantly. Create sales dashboards in under 15 seconds. Anyone can use Zebra AI, whether they are a BI consultant or CEO. Just upload your data, and our AI will work it out & create your dashboard instantly. Zebra AI is secure because we believe that your business data shouldn't be shared with a large machine learning project. You don't require another chart maker. Zebra AI will help you to spot trends, retrieve data, and create compelling presentations. Share your AI chats and dashboards. Your entire team can work from the same source of information - all in just a few clicks. This is not just a powerful bot: it is a tool that experienced data analysts can use to be more efficient, no matter how complex the question or analysis.
  • 17
    GraphBase Reviews
    GraphBase (Graph Database Management System, Graph DBMS), is a Graph Database Management System designed to simplify the creation and maintenance complex data graphs. The Relational Database Management System is challenged by complex and interconnected structures. A graph database offers better modeling utility, performance, and scalability. The triplestores and property diagrams are the most recent graph database products. They have been around for almost two decades. Although they are powerful tools with many uses, they are not well-suited for managing complex data structures. GraphBase was created to make complex data management easier. It could be Knowledge. This was possible by redefining the way graph data should be managed. GraphBase makes the graph a first-class citizen. A graph equivalent to the "rows & tables" paradigm makes it so easy to use a Relational Database.
  • 18
    PuppyGraph Reviews
    PuppyGraph allows you to query multiple data stores in a single graph model. Graph databases can be expensive, require months of setup, and require a dedicated team. Traditional graph databases struggle to handle data beyond 100GB and can take hours to run queries with multiple hops. A separate graph database complicates architecture with fragile ETLs, and increases your total cost ownership (TCO). Connect to any data source, anywhere. Cross-cloud and cross region graph analytics. No ETLs are required, nor is data replication. PuppyGraph allows you to query data as a graph directly from your data lakes and warehouses. This eliminates the need for time-consuming ETL processes that are required with a traditional graph databases setup. No more data delays or failed ETL processes. PuppyGraph eliminates graph scaling issues by separating computation from storage.
  • 19
    HugeGraph Reviews
    HugeGraph is a high-speed, highly-scalable graph database. HugeGraph's excellent OLTP capability allows for the storage and querying of billions of edges and vertices. Gremlin, a powerful graph traversal and query language, can handle complex graph queries in compliance with Apache TinkerPop 3. It supports Gremlin and is compliant to Apache TinkerPop 3. Schema Metadata Management includes VertexLabel EdgeLabel PropertyKey and IndexLabel. Multi-type Indexes that support complex combination queries, range query, and exact query. Plug-in Backend Store Driver Framework. Supports RocksDB, Cassandra and ScyllaDB. It is easy to add another backend store driver if necessary. Integration with Hadoop/Spark. HugeGraph is built on the TinkerPop framework. We refer to the storage structure and schema definition of DataStax.
  • 20
    Graphlytic Reviews
    Graphlytic is a web-based BI platform that allows knowledge graph visualization and analysis. Interactively explore the graph and look for patterns using the Cypher query language or query templates for non-technical users. Users can also use filters to find answers to any graph question. The graph visualization provides deep insights into industries such as scientific research and anti-fraud investigation. Even users with little knowledge of graph theory can quickly explore the data. Cytoscape.js allows graph rendering. It can render tens to thousands of nodes and hundreds upon thousands of relationships. The application is available in three formats: Desktop, Cloud, or Server. Graphlytic Desktop is a Neo4j Desktop app that can be installed in just a few mouse clicks. Cloud instances are great for small teams who don't want or need to worry about installing and need to be up and running quickly.
  • 21
    data.world Reviews

    data.world

    data.world

    $12 per month
    data.world is a fully managed cloud service that was built for modern data architectures. We handle all updates, migrations, maintenance. It is easy to set up with our large and growing network of pre-built integrations, including all the major cloud data warehouses. Your team must solve real business problems and not struggle with complicated data software when time-to value is important. data.world makes it simple for everyone, not just the "data people", to get clear, precise, and fast answers to any business question. Our cloud-native data catalog maps siloed, distributed data to consistent business concepts, creating an unified body of knowledge that anyone can understand, use, and find. Data.world is the home of the largest open data community in the world. It is where people come together to work on everything, from data journalism to social bot detection.
  • 22
    Optable Reviews
    Integrated data clean room platform for activation. Publishers and advertisers can use Optable's data clean room technology for secure planning, activation and measurement of advertising campaigns. A new generation of data collaboration software that protects privacy. Customers of Optable can collaborate with customers and partners who are not Optable users. Flash Nodes on the platform allow you to invite others into a secure environment. Optable provides a decentralized infrastructure for identity, which allows the creation of private identity graphs. The infrastructure allows for the creation of permission-based, purpose-limited data clean rooms to minimize data movement. Interoperability between data warehouses and data clean rooms is essential. Our open-source software allows third party platforms to match data and Optable customers as well as implement secure cleaning functions for their own purposes.
  • 23
    Atlan Reviews
    The modern data workspace. All your data assets, from data tables to reports, will be instantly discoverable. The combination of powerful search algorithms and easy browsing makes it easy to find the right asset. Atlan automatically generates data quality profiles that make it easy to detect bad data. We have you covered, from automatic variable type detection and frequency distribution to missing values or outlier detection. Atlan takes the hassle out of managing and governing your data ecosystem. Atlan's bots analyze SQL query history to automatically construct data lineage. They also auto-detect PII information. This allows you to create dynamic access policies and best-in-class governance. Our Excel-like query builder allows anyone to query multiple data lakes, warehouses, and DBs. Native integrations with tools such as Tableau and Jupyter make data collaboration possible.
  • 24
    MLReef Reviews
    MLReef allows domain experts and data scientists secure collaboration via a hybrid approach of pro-code and no-code development. Distributed workloads lead to a 75% increase in productivity. This allows teams to complete more ML project faster. Domain experts and data scientists can collaborate on the same platform, reducing communication ping-pong to 100%. MLReef works at your location and enables you to ensure 100% reproducibility and continuity. You can rebuild all work at any moment. To create interoperable, versioned, explorable AI modules, you can use git repositories that are already well-known. Your data scientists can create AI modules that you can drag and drop. These modules can be modified by parameters, ported, interoperable and explorable within your organization. Data handling requires a lot of expertise that even a single data scientist may not have. MLReef allows your field experts to assist you with data processing tasks, reducing complexity.
  • 25
    Bitfount Reviews
    Bitfount provides a platform for distributed data sciences. We enable deep data collaborations that do not require data sharing. Distributed data science connects algorithms to data and not the other way around. In minutes, you can set up a federated privacy protecting analytics and machine learning network. This will allow your team to focus on innovation and insights instead of bureaucracy. Although your data team is equipped with the skills to solve your most difficult problems and innovating, they are hindered by data access barriers. Are you having trouble accessing your data? Are compliance processes taking too much time? Bitfount offers a better way for data experts to be unleashed. Connect siloed or multi-cloud data sources while protecting privacy and commercial sensitivity. No expensive, time-consuming data lift-and-shift. Useage-based access control to ensure that teams only do the analysis you need, with the data you want. Transfer access control management to the teams that have the data.
  • 26
    Mode Reviews
    Learn how users interact with your product and identify opportunities to help you make product decisions. Mode allows one Stitch analyst to perform the work of a full-time data team with speed, flexibility, collaboration. Create dashboards for annual revenue and then use chart visualizations quickly to identify anomalies. Share analysis with teams to create polished reports that are investor-ready. Connect your entire tech stack with Mode to identify upstream issues and improve performance. With webhooks and APIs, you can speed up team workflows. Learn how users interact with your product and identify areas for improvement. Use marketing and product data to identify weak points in your funnel, improve landing page performance, and prevent churn from happening.
  • 27
    Morph Reviews
    Morph AI helps you collect, sort and analyze data. Simply tell it in plain English what you want. Work together in real-time on your dataset instead of sending files back and forward. Morph features are accessible without filtering thanks to the robust API support. It's not just a friendly interface; it runs Postgres. It's as easy to use a spreadsheet but is designed to handle millions records. Manage access for different users and teams in a single click. Upload your data in the correct format, no matter what the format is. We believe data should be easy to collect, store and understand for everyone, with a simple interface. Data can be used in a powerful and easy way by engineers, marketing, sales, customer service, and management. We have been developing business software and end user software for different companies for seven years. This included projects dealing with complex data such as machine learning and Blockchain.
  • 28
    ZinkML Reviews
    ZinkML is an open-source data science platform that does not require any coding. It was designed to help organizations leverage data more effectively. Its visual and intuitive interface eliminates the need for extensive programming expertise, making data sciences accessible to a wider range of users. ZinkML streamlines data science from data ingestion, model building, deployment and monitoring. Users can drag and drop components to create complex pipelines, explore the data visually, or build predictive models, all without writing a line of code. The platform offers automated model selection, feature engineering and hyperparameter optimization, which accelerates the model development process. ZinkML also offers robust collaboration features that allow teams to work seamlessly together on data science projects. By democratizing the data science, we empower businesses to get maximum value out of their data and make better decisions.
  • 29
    Oracle Spatial and Graph Reviews
    Graph databases are part of Oracle's converged data platform. They eliminate the need for a separate database to store and move data. Analysts and developers are able to detect fraud in banking, locate connections and link data, and improve traceability and smart manufacturing traceability. All this while gaining enterprise-grade security and ease of data ingestion and strong support for data workloads. Oracle Autonomous Database also includes Graph Studio. It offers one-click provisioning, integrated tools, and security. Graph Studio automates graph data administration and simplifies analysis, modeling, and visualization throughout the graph analytics lifecycle. Oracle supports both RDF knowledge graphs and property graphs. It also simplifies the process for modeling relational data as graph structures. Interactive graph queries can be run directly on graph data, or in high-performance, in-memory graph servers.
  • 30
    InfiniteGraph Reviews
    InfiniteGraph is a massively scalable graph database specifically designed to excel at high-speed ingest of massive volumes of data (billions of nodes and edges per hour) while supporting complex queries. InfiniteGraph can seamlessly distribute connected graph data across a global enterprise. InfiniteGraph is a schema-based graph database that supports highly complex data models. It also has an advanced schema evolution capability that allows you to modify and evolve the schema of an existing database. InfiniteGraph’s Placement Management Capability allows you to optimize the placement of data items resulting in tremendous performance improvements in both query and ingest. InfiniteGraph has client-side caching which caches frequently used node and edges. This can allow InfiniteGraph to perform like an in-memory graph database. InfiniteGraph's DO query language enables complex "beyond graph" queries not supported by other graph databases.
  • 31
    GraphDB Reviews
    *GraphDB allows the creation of large knowledge graphs by linking diverse data and indexing it for semantic search. * GraphDB is a robust and efficient graph database that supports RDF and SPARQL. The GraphDB database supports a highly accessible replication cluster. This has been demonstrated in a variety of enterprise use cases that required resilience for data loading and query answering. Visit the GraphDB product page for a quick overview and a link to download the latest releases. GraphDB uses RDF4J to store and query data. It also supports a wide range of query languages (e.g. SPARQL and SeRQL), and RDF syntaxes such as RDF/XML and Turtle.
  • 32
    AnzoGraph DB Reviews
    AnzoGraph DB offers a wide range of analytical features that can be used to enhance your analytical framework. This video will show you how AnzoGraph DB, a native graph database for massively parallel processing (MPP), is designed for data harmonization. Horizontally scalable graph database designed for online analytics and harmonization. AnzoGraphDB, a market-leading graph database, can help you tackle linked data problems and data harmonization. AnzoGraph DB offers industrialized online performance for enterprise-scale graph apps. AnzoGraph DB supports Labeled Property Graphs (LPGs) and familiar SPARQL*/OWL semantic graphs. You have access to many data science, machine learning, and analytical capabilities that will help you gain new insights at an unparalleled speed and scale. Your analysis will be more effective if you consider the context and relationships of data. Data loading and queries ultra-fast
  • 33
    RecallGraph Reviews
    RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://blog.recallgraph.tech/never-lose-your-old-data-again.
  • 34
    Titan Reviews
    Titan is a graph database that can store and query graphs with hundreds of billions of edges and vertices distributed across a multi-machine cluster. Titan is a transactional database which can handle thousands of concurrent users performing complex graph traversals in real-time. For a growing user and data base, you can use linear and elastic scaling. Data replication and data distribution for performance and fault tolerance. Hot backups and high availability for multi-datacenters Support for ACID, eventual consistency and other storage backends. Support for Apache Cassandra and Apache HBase storage backends, as well as Oracle BerkeleyDB. Integration with big data platforms such as Apache Spark, Apache Giraph, and Apache Hadoop allows for global graph data analytics, reporting and ETL. Native integration with TinkerPop graph stack to support Gremlin's graph query language, Gremlin's graph server, and Gremlin apps.
  • 35
    TigerGraph Reviews
    The TigerGraph™, a graph platform based on its Native Parallel Graph™, technology, represents the next evolution in graph database evolution. It is a complete, distributed parallel graph computing platform that supports web-scale data analytics in real time. Combining the best ideas (MapReduce, Massively Parallel Processing, and fast data compression/decompression) with fresh development, TigerGraph delivers what you've been waiting for: the speed, scalability, and deep exploration/querying capability to extract more business value from your data.
  • 36
    JanusGraph Reviews
    JanusGraph is an optimized graph database that can store and query graphs with hundreds of billions of edges and vertices distributed across a multi-machine cluster. JanusGraph is a project of The Linux Foundation and includes participants from Expero and Google, GRAKN.AI., Hortonworks. IBM, and Amazon. Linear and elastic scaling for growing data and users. Data replication and data distribution for performance and fault tolerance. Hot backups and high availability for multi-datacenters All functionality is completely free. There is no need to purchase commercial licenses. JanusGraph is completely open source under the Apache 2 License. JanusGraph is an open source transactional database that can handle thousands of concurrent users performing complex graph traversals in real-time. ACID and eventual consistency support. JanusGraph offers online transactional processing (OLTP) and global graph analytics (OLAP), through its Apache Spark integration.
  • 37
    VelocityDB Reviews

    VelocityDB

    VelocityDB

    $200 per 6 moths
    VelocityDB is a database platform unlike any other. It stores data faster and more efficiently than other databases engines at a fraction the cost. It stores.NET objects in their original form without any mapping to tables, JSON, or XML. VelocityGraph, an open-source property graph database, can be used in conjunction the VelocityDB object data base. Object and graph database engine VelocityDB, a C#.NET NoSQL object database, can be extended to VelocityGraph. World's fastest most scalable & flexible database. A bug reported with a reproducible case is usually fixed within one week. This database system offers the greatest benefit, flexibility. You can fine-tune your application like no other database system. You can choose the most suitable data structure for your application with VelocityDB. You can choose where and how the data is indexed and accessed.
  • 38
    Fluree Reviews
    Fluree is an immutable RDF graph database written in Clojure and adhering to W3C standards, supporting JSON and JSON-LD while accommodating various RDF ontologies. It operates with an immutable ledger that secures transactions with cryptographic integrity, alongside a rich RDF graph database capable of various queries. It employs SmartFunctions for enforcing data management rules, including identity and access management and data quality. Additionally, It boasts a scalable, cloud-native architecture utilizing a lightweight Java runtime, with individually scalable ledger and graph database components, embodying a "Data-Centric" ideology that treats data as a reusable asset independent of singular applications.
  • 39
    ArangoDB Reviews
    Natively store data for graphs, documents and search needs. One query language allows for feature-rich access. You can map data directly to the database and access it using the best patterns for the job: traversals, joins search, ranking geospatial, aggregateions - you name them. Polyglot persistence without the cost. You can easily design, scale, and adapt your architectures to meet changing needs with less effort. Combine the flexibility and power of JSON with graph technology to extract next-generation features even from large datasets.
  • 40
    Memgraph Reviews
    Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data.
  • 41
    Grakn Reviews
    The database is the foundation of intelligent systems. Grakn is an intelligent database, a knowledge graph. A data schema that is intuitive and expressive. It can be used to create rich knowledge models by defining hierarchies, hyperentities, hyperrelations, rules, and constructs. Intelligent language that infers data types, relationships and attributes, as well as complex patterns, at runtime and with persistent and distributed data. Accessible through simple queries, out-of-the box distributed analytics (Pregel & MapReduce), are available through the language. Strong abstraction allows for simpler expressions of complex constructs while the system determines the best query execution. Grakn KGMS & Workbase allow you to scale your enterprise Knowledge Graph. A distributed database that can scale across a network of computers by partitioning and replicating.
  • 42
    Apache TinkerPop Reviews

    Apache TinkerPop

    Apache Software Foundation

    Free
    Apache TinkerPop™, a graph computing framework, is available for graph databases (OLTP), and graph analytic system (OLAP). Apache TinkerPop's graph traversal language is Gremlin. Gremlin allows users to express complex traversals (or queries) on their application's property diagram in a concise, data-flow language. Each Gremlin traversal consists of a sequence (potentially nested). A graph is a structure that is composed of vertices or edges. Each edge and vertices can have an unlimited number of key/value pairs, called properties. Vertices can be used to denote discrete objects, such as a person or a place or an event. Edges denote relationships between vertices. A person might know another person, be involved in an event, or have been to a specific place recently. If a domain contains a heterogeneous set objects (vertices), that can be linked to one another in many ways (edges), it is called a domain.
  • 43
    Dgraph Reviews
    Dgraph is an open-source, low-latency, high throughput native and distributed graph database. DGraph is designed to scale easily to meet the needs for small startups and large companies with huge amounts of data. It can handle terabytes structured data on commodity hardware with low latency to respond to user queries. It addresses business needs and can be used in cases that involve diverse social and knowledge networks, real-time recommendation engines and semantic search, pattern matching, fraud detection, serving relationship information, and serving web applications.
  • 44
    Stardog Reviews
    Data engineers and scientists can be 95% better at their jobs with ready access to the most flexible semantic layer, explainable AI and reusable data modelling. They can create and expand semantic models, understand data interrelationships, and run federated query to speed up time to insight. Stardog's graph data virtualization and high performance graph database are the best available -- at a price that is up to 57x less than competitors -- to connect any data source, warehouse, or enterprise data lakehouse without copying or moving data. Scale users and use cases at a lower infrastructure cost. Stardog's intelligent inference engine applies expert knowledge dynamically at query times to uncover hidden patterns and unexpected insights in relationships that lead to better data-informed business decisions and outcomes.
  • 45
    Aster SQL-GR Reviews
    Powerful graph analytics made easy. Aster SQL-GR™, a native graph processing engine for graph analysis, makes it easy to solve complex business issues such as social network/influencer analysis. It also helps with fraud detection, supply chain management and network analysis. These problems are more impactful than simple graph navigation analysis. SQL-GR is based upon the Bulk Synchronous Process (BSP) model. It uses massively iterative and parallel processing to solve complex graph problems. SQL-GR is extremely scalable because it is based upon the BSP iterative process model. It also takes advantage of Teradata Aster’s massively scalable parallel processor (MPP) architecture to distribute graph processing across multiple servers/nodes. SQL-GR does not have memory limits and is not limited to one server/node. SQL-GR can easily perform complex graph analysis on large data sets with unmatched speed and power.
  • 46
    HyperGraphDB Reviews
    HyperGraphDB is an open-source, general-purpose data storage system that uses a powerful knowledge management approach called directed hypergraphs. Although it is a persistent memory model, it can also serve as an embedded object-oriented data base for Java projects of any size. Or a graph database or a (non SQLL) relational database. HyperGraphDB is a storage system that uses generalized hypergraphs for its underlying data model. A tuple is a collection of 0 or more tuples. Each atom is a tuple of this type. The data model can be viewed as either relational, where higher-order, non-ary relationships are permitted, or graph-oriented where edges point to an arbitrary set nodes. Each atom is assigned a strongly-typed, arbitrary value. The hypergraph that manages these values is embedded in the type system and can be customized from the ground up.
  • 47
    DataStax Reviews
    The Open, Multi-Cloud Stack to Modern Data Apps. Built on Apache Cassandra™, an open-source Apache Cassandra™. Global scale and 100% uptime without vendor lock in You can deploy on multi-clouds, open-source, on-prem and Kubernetes. For a lower TCO, use elastic and pay-as you-go. Stargate APIs allow you to build faster with NoSQL, reactive, JSON and REST. Avoid the complexity of multiple OSS projects or APIs that don’t scale. It is ideal for commerce, mobile and AI/ML. Get building modern data applications with Astra, a database-as-a-service powered by Apache Cassandra™. Richly interactive apps that are viral-ready and elastic using REST, GraphQL and JSON. Pay-as you-go Apache Cassandra DBaaS which scales easily and affordably
  • 48
    RelationalAI Reviews
    RelationalAI is a next generation database system that allows intelligent data applications to be built on relational knowledge graphs. Data-centric application design combines logic and data into reusable models. Intelligent data applications can understand and make use each relation in a model. Relational provides a knowledge graph system that allows knowledge to be expressed as executable models. These models can easily be extended using declarative, human-readable software. RelationalAI's expressive and declarative language results in a 10-100x decrease in code. By involving non-technical domain specialists in the creation process, and automating complex programming tasks, applications are created faster and with better quality. The extensible graph data model is a foundation for data-centric architecture. Integrate models to uncover new relationships and reduce barriers between applications.
  • 49
    ArcadeDB Reviews
    ArcadeDB allows you to manage complex models without any compromises. Polyglot Persistence is gone. There is no need to have multiple databases. ArcadeDB Multi-Model databases can store graphs and documents, key values, time series, and key values. Each model is native to the database engine so you don't need to worry about translations slowing down your computer. ArcadeDB's engine was developed with Alien Technology. It can crunch millions upon millions of records per second. ArcadeDB's traversing speed does not depend on the size of the database. It doesn't matter if your database contains a few records or a billion. ArcadeDB can be used as an embedded database on a single server. It can scale up by using Kubernetes to connect multiple servers. It is flexible enough to run on any platform that has a small footprint. Your data is protected. Our unbreakable fully transactional engine ensures durability for mission-critical production database databases. ArcadeDB uses the Raft Consensus Algorithm in order to maintain consistency across multiple servers.
  • 50
    Graph Engine Reviews
    Graph Engine (GE), a distributed in-memory processing engine, is supported by a strongly-typed RAM storage and a general distributed computing engine. The distributed RAM store is a global addressable, high-performance key-value storage that can be accessed by a cluster of computers. GE's RAM store allows fast random data access over a large data set. GE is a natural platform for large graph processing due to its ability to speed data exploration and distribute parallel computing. GE supports both low latency online query processing as well as high-throughput offline analysis on billion-node large Graphs. Schema is important when data processing must be efficient. For data storage that is compact, quick and clear, strong data modeling is essential. GE has the ability to manage billions of runtime objects of different sizes. As the number of objects increases, each byte counts. GE offers fast memory reallocation and allocation with high memory ratios.