What Integrates with TensorBoard?
Find out what TensorBoard integrations exist in 2025. Learn what software and services currently integrate with TensorBoard, and sort them by reviews, cost, features, and more. Below is a list of products that TensorBoard currently integrates with:
-
1
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
2
GitHub
GitHub
$7 per month 22 RatingsGitHub stands as the leading platform for developers globally, renowned for its security, scalability, and community appreciation. By joining the ranks of millions of developers and businesses, you can contribute to the software that drives the world forward. Collaborate within the most inventive communities, all while utilizing our top-tier tools, support, and services. If you're overseeing various contributors, take advantage of our free GitHub Team for Open Source option. Additionally, GitHub Sponsors is available to assist in financing your projects. We're thrilled to announce the return of The Pack, where we’ve teamed up to provide students and educators with complimentary access to premier developer tools throughout the academic year and beyond. Furthermore, if you work for a recognized nonprofit, association, or a 501(c)(3), we offer a discounted Organization account to support your mission. With these offerings, GitHub continues to empower diverse users in their software development journeys. -
3
Google Colab
Google
8 RatingsGoogle Colab is a complimentary, cloud-based Jupyter Notebook platform that facilitates environments for machine learning, data analysis, and educational initiatives. It provides users with immediate access to powerful computational resources, including GPUs and TPUs, without the need for complex setup, making it particularly suitable for those engaged in data-heavy projects. Users can execute Python code in an interactive notebook format, collaborate seamlessly on various projects, and utilize a wide range of pre-built tools to enhance their experimentation and learning experience. Additionally, Colab has introduced a Data Science Agent that streamlines the analytical process by automating tasks from data comprehension to providing insights within a functional Colab notebook, although it is important to note that the agent may produce errors. This innovative feature further supports users in efficiently navigating the complexities of data science workflows. -
4
Dataoorts GPU Cloud was built for AI. Dataoorts offers GC2 and a X-Series GPU instance to help you excel in your development tasks. Dataoorts GPU instances ensure that computational power is available to everyone, everywhere. Dataoorts can help you with your training, scaling and deployment tasks. Serverless computing allows you to create your own inference endpoint API cost you just $5 Per month.
-
5
LLaMA-Factory
hoshi-hiyouga
FreeLLaMA-Factory is an innovative open-source platform aimed at simplifying and improving the fine-tuning process for more than 100 Large Language Models (LLMs) and Vision-Language Models (VLMs). It accommodates a variety of fine-tuning methods such as Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA), and Prefix-Tuning, empowering users to personalize models with ease. The platform has shown remarkable performance enhancements; for example, its LoRA tuning achieves training speeds that are up to 3.7 times faster along with superior Rouge scores in advertising text generation tasks when compared to conventional techniques. Built with flexibility in mind, LLaMA-Factory's architecture supports an extensive array of model types and configurations. Users can seamlessly integrate their datasets and make use of the platform’s tools for optimized fine-tuning outcomes. Comprehensive documentation and a variety of examples are available to guide users through the fine-tuning process with confidence. Additionally, this platform encourages collaboration and sharing of techniques among the community, fostering an environment of continuous improvement and innovation. -
6
Intel Tiber AI Studio
Intel
Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects. -
7
Ludwig
Uber AI
Ludwig serves as a low-code platform specifically designed for the development of tailored AI models, including large language models (LLMs) and various deep neural networks. With Ludwig, creating custom models becomes a straightforward task; you only need a simple declarative YAML configuration file to train an advanced LLM using your own data. It offers comprehensive support for learning across multiple tasks and modalities. The framework includes thorough configuration validation to identify invalid parameter combinations and avert potential runtime errors. Engineered for scalability and performance, it features automatic batch size determination, distributed training capabilities (including DDP and DeepSpeed), parameter-efficient fine-tuning (PEFT), 4-bit quantization (QLoRA), and the ability to handle larger-than-memory datasets. Users enjoy expert-level control, allowing them to manage every aspect of their models, including activation functions. Additionally, Ludwig facilitates hyperparameter optimization, offers insights into explainability, and provides detailed metric visualizations. Its modular and extensible architecture enables users to experiment with various model designs, tasks, features, and modalities with minimal adjustments in the configuration, making it feel like a set of building blocks for deep learning innovations. Ultimately, Ludwig empowers developers to push the boundaries of AI model creation while maintaining ease of use.
- Previous
- You're on page 1
- Next