Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
RaimaDB
RaimaDB, an embedded time series database that can be used for Edge and IoT devices, can run in-memory. It is a lightweight, secure, and extremely powerful RDBMS. It has been field tested by more than 20 000 developers around the world and has been deployed in excess of 25 000 000 times.
RaimaDB is a high-performance, cross-platform embedded database optimized for mission-critical applications in industries such as IoT and edge computing. Its lightweight design makes it ideal for resource-constrained environments, supporting both in-memory and persistent storage options. RaimaDB offers flexible data modeling, including traditional relational models and direct relationships through network model sets. With ACID-compliant transactions and advanced indexing methods like B+Tree, Hash Table, R-Tree, and AVL-Tree, it ensures data reliability and efficiency. Built for real-time processing, it incorporates multi-version concurrency control (MVCC) and snapshot isolation, making it a robust solution for applications demanding speed and reliability.
Learn more
RankLLM
RankLLM is a comprehensive Python toolkit designed to enhance reproducibility in information retrieval research, particularly focusing on listwise reranking techniques. This toolkit provides an extensive array of rerankers, including pointwise models such as MonoT5, pairwise models like DuoT5, and listwise models that work seamlessly with platforms like vLLM, SGLang, or TensorRT-LLM. Furthermore, it features specialized variants like RankGPT and RankGemini, which are proprietary listwise rerankers tailored for enhanced performance. The toolkit comprises essential modules for retrieval, reranking, evaluation, and response analysis, thereby enabling streamlined end-to-end workflows. RankLLM's integration with Pyserini allows for efficient retrieval processes and ensures integrated evaluation for complex multi-stage pipelines. Additionally, it offers a dedicated module for in-depth analysis of input prompts and LLM responses, which mitigates reliability issues associated with LLM APIs and the unpredictable nature of Mixture-of-Experts (MoE) models. Supporting a variety of backends, including SGLang and TensorRT-LLM, it ensures compatibility with an extensive range of LLMs, making it a versatile choice for researchers in the field. This flexibility allows researchers to experiment with different model configurations and methodologies, ultimately advancing the capabilities of information retrieval systems.
Learn more
Azure AI Search
Achieve exceptional response quality through a vector database specifically designed for advanced retrieval augmented generation (RAG) and contemporary search functionalities. Emphasize substantial growth with a robust, enterprise-ready vector database that inherently includes security, compliance, and ethical AI methodologies. Create superior applications utilizing advanced retrieval techniques that are underpinned by years of research and proven customer success. Effortlessly launch your generative AI application with integrated platforms and data sources, including seamless connections to AI models and frameworks. Facilitate the automatic data upload from an extensive array of compatible Azure and third-party sources. Enhance vector data processing with comprehensive features for extraction, chunking, enrichment, and vectorization, all streamlined in a single workflow. Offer support for diverse vector types, hybrid models, multilingual capabilities, and metadata filtering. Go beyond simple vector searches by incorporating keyword match scoring, reranking, geospatial search capabilities, and autocomplete features. This holistic approach ensures that your applications can meet a wide range of user needs and adapt to evolving demands.
Learn more