Best Syntheticus Alternatives in 2025
Find the top alternatives to Syntheticus currently available. Compare ratings, reviews, pricing, and features of Syntheticus alternatives in 2025. Slashdot lists the best Syntheticus alternatives on the market that offer competing products that are similar to Syntheticus. Sort through Syntheticus alternatives below to make the best choice for your needs
-
1
Windocks provides on-demand Oracle, SQL Server, as well as other databases that can be customized for Dev, Test, Reporting, ML, DevOps, and DevOps. Windocks database orchestration allows for code-free end to end automated delivery. This includes masking, synthetic data, Git operations and access controls, as well as secrets management. Databases can be delivered to conventional instances, Kubernetes or Docker containers. Windocks can be installed on standard Linux or Windows servers in minutes. It can also run on any public cloud infrastructure or on-premise infrastructure. One VM can host up 50 concurrent database environments. When combined with Docker containers, enterprises often see a 5:1 reduction of lower-level database VMs.
-
2
Rockfish Data
Rockfish Data
Rockfish Data represents the pioneering solution in the realm of outcome-focused synthetic data generation, effectively revealing the full potential of operational data. The platform empowers businesses to leverage isolated data for training machine learning and AI systems, creating impressive datasets for product presentations, among other uses. With its ability to intelligently adapt and optimize various datasets, Rockfish offers seamless adjustments to different data types, sources, and formats, ensuring peak efficiency. Its primary goal is to deliver specific, quantifiable outcomes that contribute real business value while featuring a purpose-built architecture that prioritizes strong security protocols to maintain data integrity and confidentiality. By transforming synthetic data into a practical asset, Rockfish allows organizations to break down data silos, improve workflows in machine learning and artificial intelligence, and produce superior datasets for a wide range of applications. This innovative approach not only enhances operational efficiency but also promotes a more strategic use of data across various sectors. -
3
DATPROF
DATPROF
Mask, generate, subset, virtualize, and automate your test data with the DATPROF Test Data Management Suite. Our solution helps managing Personally Identifiable Information and/or too large databases. Long waiting times for test data refreshes are a thing of the past. -
4
Hazy
Hazy
Unlock the potential of your enterprise data. Hazy transforms your enterprise data, making it quicker, simpler, and more secure for utilization. We empower every organization to effectively harness its data. In today’s landscape, data is incredibly valuable, yet increasing privacy regulations and demands mean that much of it remains inaccessible. Hazy has developed an innovative method that enables the practical use of your data, facilitating better decision-making, the advancement of new technologies, and enhanced value delivery for your customers. You can create and implement realistic test data, allowing for swift validation of new systems and technologies, which accelerates your organization’s digital transformation journey. By generating ample secure, high-quality data, you can build, train, and refine the algorithms that drive your AI applications and streamline automation. Additionally, we help teams produce and share precise analytics and insights regarding products, customers, and operations to enhance decision-making processes, ultimately leading to more informed strategies and outcomes. With Hazy, your enterprise can truly thrive in a data-driven world. -
5
MOSTLY AI
MOSTLY AI
As interactions with customers increasingly transition from physical to digital environments, it becomes necessary to move beyond traditional face-to-face conversations. Instead, customers now convey their preferences and requirements through data. Gaining insights into customer behavior and validating our preconceptions about them also relies heavily on data-driven approaches. However, stringent privacy laws like GDPR and CCPA complicate this deep understanding even further. The MOSTLY AI synthetic data platform effectively addresses this widening gap in customer insights. This reliable and high-quality synthetic data generator supports businesses across a range of applications. Offering privacy-compliant data alternatives is merely the starting point of its capabilities. In terms of adaptability, MOSTLY AI's synthetic data platform outperforms any other synthetic data solution available. The platform's remarkable versatility and extensive use case applicability establish it as an essential AI tool and a transformative resource for software development and testing. Whether for AI training, enhancing explainability, mitigating bias, ensuring governance, or generating realistic test data with subsetting and referential integrity, MOSTLY AI serves a broad spectrum of needs. Ultimately, its comprehensive features empower organizations to navigate the complexities of customer data while maintaining compliance and protecting user privacy. -
6
Data serves as an essential asset for businesses today. By leveraging the right AI models, organizations can effectively construct and analyze customer profiles, identify emerging trends, and uncover new avenues for growth. However, developing precise and reliable AI models necessitates vast amounts of data, presenting challenges related to both the quality and quantity of the information collected. Furthermore, strict regulations such as GDPR impose limitations on the use of certain sensitive data, including customer information. This calls for a fresh perspective, particularly in software testing environments where obtaining high-quality test data proves difficult. Often, real customer data is utilized, which raises concerns about potential GDPR violations and the risk of incurring substantial fines. While it's anticipated that Artificial Intelligence (AI) could enhance business productivity by a minimum of 40%, many organizations face significant hurdles in implementing or fully harnessing AI capabilities due to these data-related obstacles. To address these issues, ADA employs cutting-edge deep learning techniques to generate synthetic data, providing a viable solution for organizations seeking to navigate the complexities of data utilization. This innovative approach not only mitigates compliance risks but also paves the way for more effective AI deployment.
-
7
Bifrost
Bifrost AI
Effortlessly create a wide variety of realistic synthetic data and detailed 3D environments to boost model efficacy. Bifrost's platform stands out as the quickest solution for producing the high-quality synthetic images necessary to enhance machine learning performance and address the limitations posed by real-world datasets. By bypassing the expensive and labor-intensive processes of data collection and annotation, you can prototype and test up to 30 times more efficiently. This approach facilitates the generation of data that represents rare scenarios often neglected in actual datasets, leading to more equitable and balanced collections. The traditional methods of manual annotation and labeling are fraught with potential errors and consume significant resources. With Bifrost, you can swiftly and effortlessly produce data that is accurately labeled and of pixel-perfect quality. Furthermore, real-world data often reflects the biases present in the conditions under which it was gathered, and synthetic data generation provides a valuable solution to mitigate these biases and create more representative datasets. By utilizing this advanced platform, researchers can focus on innovation rather than the cumbersome aspects of data preparation. -
8
Mimic
Facteus
Cutting-edge technology and services are designed to securely transform and elevate sensitive information into actionable insights, thereby fostering innovation and creating new avenues for revenue generation. Through the use of the Mimic synthetic data engine, businesses can effectively synthesize their data assets, ensuring that consumer privacy is safeguarded while preserving the statistical relevance of the information. This synthetic data can be leveraged for a variety of internal initiatives, such as analytics, machine learning, artificial intelligence, marketing efforts, and segmentation strategies, as well as for generating new revenue streams via external data monetization. Mimic facilitates the secure transfer of statistically relevant synthetic data to any cloud platform of your preference, maximizing the utility of your data. In the cloud, enhanced synthetic data—validated for compliance with regulatory and privacy standards—can support analytics, insights, product development, testing, and collaboration with third-party data providers. This dual focus on innovation and compliance ensures that organizations can harness the power of their data without compromising on privacy. -
9
Embracing data-centric AI has become remarkably straightforward thanks to advancements in automated data quality profiling and synthetic data creation. Our solutions enable data scientists to harness the complete power of their data. YData Fabric allows users to effortlessly navigate and oversee their data resources, providing synthetic data for rapid access and pipelines that support iterative and scalable processes. With enhanced data quality, organizations can deliver more dependable models on a larger scale. Streamline your exploratory data analysis by automating data profiling for quick insights. Connecting to your datasets is a breeze via a user-friendly and customizable interface. Generate synthetic data that accurately reflects the statistical characteristics and behaviors of actual datasets. Safeguard your sensitive information, enhance your datasets, and boost model efficiency by substituting real data with synthetic alternatives or enriching existing datasets. Moreover, refine and optimize workflows through effective pipelines by consuming, cleaning, transforming, and enhancing data quality to elevate the performance of machine learning models. This comprehensive approach not only improves operational efficiency but also fosters innovative solutions in data management.
-
10
Benerator
Benerator
None -
11
Aindo
Aindo
Streamline the lengthy processes of data handling, such as structuring, labeling, and preprocessing tasks. Centralize your data management within a single, easily integrable platform for enhanced efficiency. Rapidly enhance data accessibility through the use of synthetic data that prioritizes privacy and user-friendly exchange platforms. With the Aindo synthetic data platform, securely share data not only within your organization but also with external service providers, partners, and the AI community. Uncover new opportunities for collaboration and synergy through the exchange of synthetic data. Obtain any missing data in a manner that is both secure and transparent. Instill a sense of trust and reliability in your clients and stakeholders. The Aindo synthetic data platform effectively eliminates inaccuracies and biases, leading to fair and comprehensive insights. Strengthen your databases to withstand exceptional circumstances by augmenting the information they contain. Rectify datasets that fail to represent true populations, ensuring a more equitable and precise overall representation. Methodically address data gaps to achieve sound and accurate results. Ultimately, these advancements not only enhance data quality but also foster innovation and growth across various sectors. -
12
Datagen
Datagen
Datagen offers a self-service platform designed for creating synthetic data tailored specifically for visual AI applications, with an emphasis on both human and object data. This platform enables users to exert detailed control over the data generation process, facilitating the analysis of neural networks to identify the precise data required for enhancement. Users can effortlessly produce that targeted data to train their models effectively. To address various challenges in data generation, Datagen equips teams with a robust platform capable of producing high-quality, diverse synthetic data that is specific to particular domains. It also includes sophisticated features that allow for the simulation of dynamic humans and objects within their respective contexts. With Datagen, computer vision teams gain exceptional flexibility in managing visual results across a wide array of 3D environments, while also having the capability to establish distributions for every element of the data without any inherent biases, ensuring a fair representation in the generated datasets. This comprehensive approach empowers teams to innovate and refine their AI models with precision and efficiency. -
13
Rendered.ai
Rendered.ai
Address the obstacles faced in gathering data for the training of machine learning and AI systems by utilizing Rendered.ai, a platform-as-a-service tailored for data scientists, engineers, and developers. This innovative tool facilitates the creation of synthetic datasets specifically designed for ML and AI training and validation purposes. Users can experiment with various sensor models, scene content, and post-processing effects to enhance their projects. Additionally, it allows for the characterization and cataloging of both real and synthetic datasets. Data can be easily downloaded or transferred to personal cloud repositories for further processing and training. By harnessing the power of synthetic data, users can drive innovation and boost productivity. Rendered.ai also enables the construction of custom pipelines that accommodate a variety of sensors and computer vision inputs. With free, customizable Python sample code available, users can quickly start modeling SAR, RGB satellite imagery, and other sensor types. The platform encourages experimentation and iteration through flexible licensing, permitting nearly unlimited content generation. Furthermore, users can rapidly create labeled content within a high-performance computing environment that is hosted. To streamline collaboration, Rendered.ai offers a no-code configuration experience, fostering teamwork between data scientists and data engineers. This comprehensive approach ensures that teams have the tools they need to effectively manage and utilize data in their projects. -
14
Sixpack
PumpITup
$0Sixpack is an innovative data management solution designed to enhance the creation of synthetic data specifically for testing scenarios. In contrast to conventional methods of test data generation, Sixpack delivers a virtually limitless supply of synthetic data, which aids testers and automated systems in sidestepping conflicts and avoiding resource constraints. It emphasizes adaptability by allowing for allocation, pooling, and immediate data generation while ensuring high standards of data quality and maintaining privacy safeguards. Among its standout features are straightforward setup procedures, effortless API integration, and robust support for intricate testing environments. By seamlessly fitting into quality assurance workflows, Sixpack helps teams save valuable time by reducing the management burden of data dependencies, minimizing data redundancy, and averting test disruptions. Additionally, its user-friendly dashboard provides an organized overview of current data sets, enabling testers to efficiently allocate or pool data tailored to the specific demands of their projects, thereby optimizing the testing process further. -
15
Private AI
Private AI
Share your production data with machine learning, data science, and analytics teams securely while maintaining customer trust. Eliminate the hassle of using regexes and open-source models. Private AI skillfully anonymizes over 50 types of personally identifiable information (PII), payment card information (PCI), and protected health information (PHI) in compliance with GDPR, CPRA, and HIPAA across 49 languages with exceptional precision. Substitute PII, PCI, and PHI in your text with synthetic data to generate model training datasets that accurately resemble your original data while ensuring customer privacy remains intact. Safeguard your customer information by removing PII from more than 10 file formats, including PDF, DOCX, PNG, and audio files, to adhere to privacy laws. Utilizing cutting-edge transformer architectures, Private AI delivers outstanding accuracy without the need for third-party processing. Our solution has surpassed all other redaction services available in the industry. Request our evaluation toolkit, and put our technology to the test with your own data to see the difference for yourself. With Private AI, you can confidently navigate regulatory landscapes while still leveraging valuable insights from your data. -
16
Syntho
Syntho
Syntho is generally implemented within our clients' secure environments to ensure that sensitive information remains within a trusted setting. With our ready-to-use connectors, you can establish connections to both source data and target environments effortlessly. We support integration with all major databases and file systems, offering more than 20 database connectors and over 5 file system connectors. You have the ability to specify your preferred method of data synthetization, whether it involves realistic masking or the generation of new values, along with the automated identification of sensitive data types. Once the data is protected, it can be utilized and shared safely, upholding compliance and privacy standards throughout its lifecycle, thus fostering a secure data handling culture. -
17
Gretel
Gretel.ai
Gretel provides privacy engineering solutions through APIs that enable you to synthesize and transform data within minutes. By utilizing these tools, you can foster trust with your users and the broader community. With Gretel's APIs, you can quickly create anonymized or synthetic datasets, allowing you to handle data safely while maintaining privacy. As development speeds increase, the demand for rapid data access becomes essential. Gretel is at the forefront of enhancing data access with privacy-focused tools that eliminate obstacles and support Machine Learning and AI initiatives. You can maintain control over your data by deploying Gretel containers within your own infrastructure or effortlessly scale to the cloud using Gretel Cloud runners in just seconds. Leveraging our cloud GPUs significantly simplifies the process for developers to train and produce synthetic data. Workloads can be scaled automatically without the need for infrastructure setup or management, fostering a more efficient workflow. Additionally, you can invite your team members to collaborate on cloud-based projects and facilitate data sharing across different teams, further enhancing productivity and innovation. -
18
Synthesized
Synthesized
Elevate your AI and data initiatives by harnessing the power of premium data. At Synthesized, we fully realize the potential of data by utilizing advanced AI to automate every phase of data provisioning and preparation. Our innovative platform ensures adherence to privacy and compliance standards, thanks to the synthesized nature of the data it generates. We offer software solutions for crafting precise synthetic data, enabling organizations to create superior models at scale. By partnering with Synthesized, businesses can effectively navigate the challenges of data sharing. Notably, 40% of companies investing in AI struggle to demonstrate tangible business benefits. Our user-friendly platform empowers data scientists, product managers, and marketing teams to concentrate on extracting vital insights, keeping you ahead in a competitive landscape. Additionally, the testing of data-driven applications can present challenges without representative datasets, which often results in complications once services are launched. By utilizing our services, organizations can significantly mitigate these risks and enhance their operational efficiency. -
19
Subsalt
Subsalt Inc.
Subsalt represents a groundbreaking platform specifically designed to facilitate the utilization of anonymous data on a large enterprise scale. Its advanced Query Engine intelligently balances the necessary trade-offs between maintaining data privacy and ensuring fidelity to original data. The result of queries is fully-synthetic information that retains row-level granularity and adheres to original data formats, thereby avoiding any disruptive transformations. Additionally, Subsalt guarantees compliance through third-party audits, aligning with HIPAA's Expert Determination standard. It accommodates various deployment models tailored to the distinct privacy and security needs of each client, ensuring versatility. With certifications for SOC2-Type 2 and HIPAA compliance, Subsalt has been architected to significantly reduce the risk of real data exposure or breaches. Furthermore, its seamless integration with existing data and machine learning tools through a Postgres-compatible SQL interface simplifies the adoption process for new users, enhancing overall operational efficiency. This innovative approach positions Subsalt as a leader in the realm of data privacy and synthetic data generation. -
20
LinkedAI
LinkedAi
We apply the highest quality standards to label your data, ensuring that even the most intricate AI projects are well-supported through our exclusive labeling platform. This allows you to focus on developing the products that resonate with your customers. Our comprehensive solution for image annotation features rapid labeling tools, synthetic data generation, efficient data management, automation capabilities, and on-demand annotation services, all designed to expedite the completion of computer vision initiatives. When precision in every pixel is crucial, you require reliable, AI-driven image annotation tools that cater to your unique use cases, including various instances, attributes, and much more. Our skilled team of data labelers is adept at handling any data-related challenge that may arise. As your requirements for data labeling expand, you can trust us to scale the necessary workforce to achieve your objectives, ensuring that unlike crowdsourcing platforms, the quality of your data remains uncompromised. With our commitment to excellence, you can confidently advance your AI projects and deliver exceptional results. -
21
Amazon SageMaker Ground Truth
Amazon Web Services
$0.08 per monthAmazon SageMaker enables the identification of various types of unprocessed data, including images, text documents, and videos, while also allowing for the addition of meaningful labels and the generation of synthetic data to develop high-quality training datasets for machine learning applications. The platform provides two distinct options, namely Amazon SageMaker Ground Truth Plus and Amazon SageMaker Ground Truth, which grant users the capability to either leverage a professional workforce to oversee and execute data labeling workflows or independently manage their own labeling processes. For those seeking greater autonomy in crafting and handling their personal data labeling workflows, SageMaker Ground Truth serves as an effective solution. This service simplifies the data labeling process and offers flexibility by enabling the use of human annotators through Amazon Mechanical Turk, external vendors, or even your own in-house team, thereby accommodating various project needs and preferences. Ultimately, SageMaker's comprehensive approach to data annotation helps streamline the development of machine learning models, making it an invaluable tool for data scientists and organizations alike. -
22
syntheticAIdata
syntheticAIdata
syntheticAIdata serves as your ally in producing synthetic datasets that allow for easy and extensive creation of varied data collections. By leveraging our solution, you not only achieve substantial savings but also maintain privacy and adhere to regulations, all while accelerating the progression of your AI products toward market readiness. Allow syntheticAIdata to act as the driving force in turning your AI dreams into tangible successes. With the capability to generate vast amounts of synthetic data, we can address numerous scenarios where actual data is lacking. Additionally, our system can automatically produce a wide range of annotations, significantly reducing the time needed for data gathering and labeling. By opting for large-scale synthetic data generation, you can further cut down on expenses related to data collection and tagging. Our intuitive, no-code platform empowers users without technical knowledge to effortlessly create synthetic data. Furthermore, the seamless one-click integration with top cloud services makes our solution the most user-friendly option available, ensuring that anyone can easily access and utilize our groundbreaking technology for their projects. This ease of use opens up new possibilities for innovation in diverse fields. -
23
K2View believes that every enterprise should be able to leverage its data to become as disruptive and agile as possible. We enable this through our Data Product Platform, which creates and manages a trusted dataset for every business entity – on demand, in real time. The dataset is always in sync with its sources, adapts to changes on the fly, and is instantly accessible to any authorized data consumer. We fuel operational use cases, including customer 360, data masking, test data management, data migration, and legacy application modernization – to deliver business outcomes at half the time and cost of other alternatives.
-
24
OneView
OneView
Utilizing only real data presents notable obstacles in the training of machine learning models. In contrast, synthetic data offers boundless opportunities for training, effectively mitigating the limitations associated with real datasets. Enhance the efficacy of your geospatial analytics by generating the specific imagery you require. With customizable options for satellite, drone, and aerial images, you can swiftly and iteratively create various scenarios, modify object ratios, and fine-tune imaging parameters. This flexibility allows for the generation of any infrequent objects or events. The resulting datasets are meticulously annotated, devoid of errors, and primed for effective training. The OneView simulation engine constructs 3D environments that serve as the foundation for synthetic aerial and satellite imagery, incorporating numerous randomization elements, filters, and variable parameters. These synthetic visuals can effectively substitute real data in the training of machine learning models for remote sensing applications, leading to enhanced interpretation outcomes, particularly in situations where data coverage is sparse or quality is subpar. With the ability to customize and iterate quickly, users can tailor their datasets to meet specific project needs, further optimizing the training process. -
25
Statice
Statice
Licence starting at 3,990€ /m Statice is a data anonymization tool that draws on the most recent data privacy research. It processes sensitive data to create anonymous synthetic datasets that retain all the statistical properties of the original data. Statice's solution was designed for enterprise environments that are flexible and secure. It incorporates features that guarantee privacy and utility of data while maintaining usability. -
26
Synthesis AI
Synthesis AI
A platform designed for ML engineers that generates synthetic data, facilitating the creation of more advanced AI models. With straightforward APIs, users can quickly generate a wide variety of perfectly-labeled, photorealistic images as needed. This highly scalable, cloud-based system can produce millions of accurately labeled images, allowing for innovative data-centric strategies that improve model performance. The platform offers an extensive range of pixel-perfect labels, including segmentation maps, dense 2D and 3D landmarks, depth maps, and surface normals, among others. This capability enables rapid design, testing, and refinement of products prior to hardware implementation. Additionally, it allows for prototyping with various imaging techniques, camera positions, and lens types to fine-tune system performance. By minimizing biases linked to imbalanced datasets while ensuring privacy, the platform promotes fair representation across diverse identities, facial features, poses, camera angles, lighting conditions, and more. Collaborating with leading customers across various applications, our platform continues to push the boundaries of AI development. Ultimately, it serves as a pivotal resource for engineers seeking to enhance their models and innovate in the field. -
27
MDClone
MDClone
The MDClone ADAMS Platform serves as a robust, self-service environment for data analytics that facilitates collaboration, research, and innovation within the healthcare sector. With this groundbreaking platform, users gain real-time, dynamic, secure, and independent access to valuable insights, effectively dismantling obstacles to healthcare data exploration. This empowers organizations to embark on a journey of continuous learning that enhances patient care, optimizes operations, encourages research initiatives, and fosters innovation, thereby driving actionable outcomes throughout the entire healthcare ecosystem. Additionally, the use of synthetic data allows for seamless collaboration among teams, organizations, and external partners, enabling them to delve into the essential information they require precisely when it is needed. By tapping into real-world data sourced directly from within health systems, life science organizations can pinpoint promising patient cohorts for detailed post-marketing analysis. Ultimately, this innovative approach transforms the way healthcare data is accessed and utilized for life sciences, paving the way for unprecedented advancements in the field. As a result, stakeholders can make informed decisions that significantly impact patient outcomes and overall healthcare quality. -
28
Synth
Synth
FreeSynth is a versatile open-source tool designed for data-as-code that simplifies the process of generating consistent and scalable data through a straightforward command-line interface. With Synth, you can create accurate and anonymized datasets that closely resemble production data, making it ideal for crafting test data fixtures for development, testing, and continuous integration purposes. This tool empowers you to generate data narratives tailored to your needs by defining constraints, relationships, and semantics. Additionally, it enables the seeding of development and testing environments while ensuring sensitive production data is anonymized. Synth allows you to create realistic datasets according to your specific requirements. Utilizing a declarative configuration language, Synth enables users to define their entire data model as code. Furthermore, it can seamlessly import data from existing sources, generating precise and adaptable data models in the process. Supporting both semi-structured data and a variety of database types, Synth is compatible with both SQL and NoSQL databases, making it a flexible solution. It also accommodates a wide range of semantic types, including but not limited to credit card numbers and email addresses, ensuring comprehensive data generation capabilities. Ultimately, Synth stands out as a powerful tool for anyone looking to enhance their data generation processes efficiently. -
29
Tonic
Tonic
Tonic provides an automated solution for generating mock data that retains essential features of sensitive datasets, enabling developers, data scientists, and sales teams to operate efficiently while ensuring confidentiality. By simulating your production data, Tonic produces de-identified, realistic, and secure datasets suitable for testing environments. The data is crafted to reflect your actual production data, allowing you to convey the same narrative in your testing scenarios. With Tonic, you receive safe and practical data designed to emulate your real-world data at scale. This tool generates data that not only resembles your production data but also behaves like it, facilitating safe sharing among teams, organizations, and across borders. It includes features for identifying, obfuscating, and transforming personally identifiable information (PII) and protected health information (PHI). Tonic also ensures the proactive safeguarding of sensitive data through automatic scanning, real-time alerts, de-identification processes, and mathematical assurances of data privacy. Moreover, it offers advanced subsetting capabilities across various database types. In addition to this, Tonic streamlines collaboration, compliance, and data workflows, delivering a fully automated experience to enhance productivity. With such robust features, Tonic stands out as a comprehensive solution for data security and usability, making it indispensable for organizations dealing with sensitive information. -
30
GenRocket
GenRocket
Enterprise synthetic test data solutions. It is essential that test data accurately reflects the structure of your database or application. This means it must be easy for you to model and maintain each project. Respect the referential integrity of parent/child/sibling relations across data domains within an app database or across multiple databases used for multiple applications. Ensure consistency and integrity of synthetic attributes across applications, data sources, and targets. A customer name must match the same customer ID across multiple transactions simulated by real-time synthetic information generation. Customers need to quickly and accurately build their data model for a test project. GenRocket offers ten methods to set up your data model. XTS, DDL, Scratchpad, Presets, XSD, CSV, YAML, JSON, Spark Schema, Salesforce. -
31
DataCebo Synthetic Data Vault (SDV)
DataCebo
FreeThe Synthetic Data Vault (SDV) is a comprehensive Python library crafted for generating synthetic tabular data with ease. It employs various machine learning techniques to capture and replicate the underlying patterns present in actual datasets, resulting in synthetic data that mirrors real-world scenarios. The SDV provides an array of models, including traditional statistical approaches like GaussianCopula and advanced deep learning techniques such as CTGAN. You can produce data for individual tables, interconnected tables, or even sequential datasets. Furthermore, it allows users to assess the synthetic data against real data using various metrics, facilitating a thorough comparison. The library includes diagnostic tools that generate quality reports to enhance understanding and identify potential issues. Users also have the flexibility to fine-tune data processing for better synthetic data quality, select from various anonymization techniques, and establish business rules through logical constraints. Synthetic data can be utilized as a substitute for real data to increase security, or as a complementary resource to augment existing datasets. Overall, the SDV serves as a holistic ecosystem for synthetic data models, evaluations, and metrics, making it an invaluable resource for data-driven projects. Additionally, its versatility ensures it meets a wide range of user needs in data generation and analysis. -
32
AI Verse
AI Verse
When capturing data in real-life situations is difficult, we create diverse, fully-labeled image datasets. Our procedural technology provides the highest-quality, unbiased, and labeled synthetic datasets to improve your computer vision model. AI Verse gives users full control over scene parameters. This allows you to fine-tune environments for unlimited image creation, giving you a competitive edge in computer vision development. -
33
Anyverse
Anyverse
Introducing a versatile and precise synthetic data generation solution. In just minutes, you can create the specific data required for your perception system. Tailor scenarios to fit your needs with limitless variations available. Datasets can be generated effortlessly in the cloud. Anyverse delivers a robust synthetic data software platform that supports the design, training, validation, or refinement of your perception system. With unmatched cloud computing capabilities, it allows you to generate all necessary data significantly faster and at a lower cost than traditional real-world data processes. The Anyverse platform is modular, facilitating streamlined scene definition and dataset creation. The intuitive Anyverse™ Studio is a standalone graphical interface that oversees all functionalities of Anyverse, encompassing scenario creation, variability configuration, asset dynamics, dataset management, and data inspection. All data is securely stored in the cloud, while the Anyverse cloud engine handles the comprehensive tasks of scene generation, simulation, and rendering. This integrated approach not only enhances productivity but also ensures a seamless experience from conception to execution. -
34
AutonomIQ
AutonomIQ
Our innovative automation platform, powered by AI and designed for low-code usage, aims to deliver exceptional results in the least amount of time. With our Natural Language Processing (NLP) technology, you can effortlessly generate automation scripts in plain English, freeing your developers to concentrate on innovative projects. Throughout your application's lifecycle, you can maintain high quality thanks to our autonomous discovery feature and comprehensive tracking of any changes. Our autonomous healing capabilities help mitigate risks in your ever-evolving development landscape, ensuring that updates are seamless and current. To comply with all regulatory standards and enhance security, utilize AI-generated synthetic data tailored to your automation requirements. Additionally, you can conduct multiple tests simultaneously, adjust test frequencies, and keep up with browser updates across diverse operating systems and platforms, ensuring a smooth user experience. This comprehensive approach not only streamlines your processes but also enhances overall productivity and efficiency. -
35
CloudTDMS
Cloud Innovation Partners
Starter Plan : Always freeCloudTDMS, your one stop for Test Data Management. Discover & Profile your Data, Define & Generate Test Data for all your team members : Architects, Developers, Testers, DevOPs, BAs, Data engineers, and more ... Benefit from CloudTDMS No-Code platform to define your data models and generate your synthetic data quickly in order to get faster return on your “Test Data Management” investments. CloudTDMS automates the process of creating test data for non-production purposes such as development, testing, training, upgrading or profiling. While at the same time ensuring compliance to regulatory and organisational policies & standards. CloudTDMS involves manufacturing and provisioning data for multiple testing environments by Synthetic Test Data Generation as well as Data Discovery & Profiling. CloudTDMS is a No-code platform for your Test Data Management, it provides you everything you need to make your data development & testing go super fast! Especially, CloudTDMS solves the following challenges : -Regulatory Compliance -Test Data Readiness -Data profiling -Automation -
36
Datomize
Datomize
$720 per monthOur platform, powered by AI, is designed to assist data analysts and machine learning engineers in fully harnessing the potential of their analytical data sets. Utilizing the patterns uncovered from current data, Datomize allows users to produce precisely the analytical data sets they require. With data that accurately reflects real-world situations, users are empowered to obtain a much clearer understanding of reality, leading to more informed decision-making. Unlock enhanced insights from your data and build cutting-edge AI solutions with ease. The generative models at Datomize create high-quality synthetic copies by analyzing the behaviors found in your existing data. Furthermore, our advanced augmentation features allow for boundless expansion of your data, and our dynamic validation tools help visualize the similarities between original and synthetic data sets. By focusing on a data-centric framework, Datomize effectively tackles the key data limitations that often hinder the development of high-performing machine learning models, ultimately driving better outcomes for users. This comprehensive approach ensures that organizations can thrive in an increasingly data-driven world. -
37
Charm
Charm
$24 per monthUtilize your spreadsheet to create, modify, and examine various text data seamlessly. You can automatically standardize addresses, split data into distinct columns, and extract relevant entities, among other features. Additionally, you can rewrite SEO-focused content, craft blog entries, and produce diverse product descriptions. Generate synthetic information such as first and last names, addresses, and phone numbers with ease. Create concise bullet-point summaries, rephrase existing text to be more succinct, and much more. Analyze product feedback, prioritize leads for sales, identify emerging trends, and additional tasks can be accomplished. Charm provides numerous templates designed to expedite common workflows for users. For instance, the Summarize With Bullet Points template allows you to condense lengthy content into a brief list of key points, while the Translate Language template facilitates the conversion of text into different languages. This versatility enhances productivity across various tasks. -
38
Protecto
Protecto.ai
As enterprise data explodes and is scattered across multiple systems, the oversight of privacy, data security and governance has become a very difficult task. Businesses are exposed to significant risks, including data breaches, privacy suits, and penalties. It takes months to find data privacy risks within an organization. A team of data engineers is involved in the effort. Data breaches and privacy legislation are forcing companies to better understand who has access to data and how it is used. Enterprise data is complex. Even if a team works for months to isolate data privacy risks, they may not be able to quickly find ways to reduce them. -
39
Neurolabs
Neurolabs
Revolutionary technology utilizing synthetic data ensures impeccable retail performance. This innovative vision technology is designed specifically for consumer packaged goods. With the Neurolabs platform, you can choose from an impressive selection of over 100,000 SKUs, featuring renowned brands like P&G, Nestlé, Unilever, and Coca-Cola, among others. Your field representatives are able to upload numerous shelf images directly from their mobile devices to our API, which seamlessly combines these images to recreate the scene. The SKU-level detection system offers precise insights, enabling you to analyze retail execution metrics such as out-of-shelf rates, shelf share percentages, and competitor pricing comparisons. Additionally, this advanced image recognition technology empowers you to optimize store operations, improve customer satisfaction, and increase profitability. You can easily implement a real-world application in under one week, gaining access to extensive image recognition datasets for over 100,000 SKUs while enhancing your retail strategy. This blend of technology and analytics allows for a significant competitive edge in the fast-evolving retail landscape. -
40
SKY ENGINE
SKY ENGINE AI
SKY ENGINE AI is a simulation and deep learning platform that generates fully annotated, synthetic data and trains AI computer vision algorithms at scale. The platform is architected to procedurally generate highly balanced imagery data of photorealistic environments and objects and provides advanced domain adaptation algorithms. SKY ENGINE AI platform is a tool for developers: Data Scientists, ML/Software Engineers creating computer vision projects in any industry. SKY ENGINE AI is a Deep Learning environment for AI training in Virtual Reality with Sensors Physics Simulation & Fusion for any Computer Vision applications. -
41
dbForge Data Generator for Oracle
Devart
$169.95dbForge Data Generator is a powerful GUI tool that populates Oracle schemas with realistic test data. The tool has an extensive collection 200+ predefined and customizeable data generators for different data types. It delivers flawless and fast data generation, including random number generation, in an easy-to-use interface. The latest version of Devart's product is always available on their official website. -
42
Datanamic Data Generator
Datanamic
€59 per monthDatanamic Data Generator serves as an impressive tool for developers, enabling them to swiftly fill databases with thousands of rows of relevant and syntactically accurate test data, which is essential for effective database testing. An empty database does little to ensure the proper functionality of your application, highlighting the need for appropriate test data. Crafting your own test data generators or scripts can be a tedious process, but Datanamic Data Generator simplifies this task significantly. This versatile tool is beneficial for DBAs, developers, and testers who require sample data to assess a database-driven application. By making the generation of database test data straightforward and efficient, it provides an invaluable resource. The tool scans your database, showcasing tables and columns along with their respective data generation configurations, and only a few straightforward entries are required to produce thorough and realistic test data. Moreover, Datanamic Data Generator offers the flexibility to create test data either from scratch or by utilizing existing data, making it even more adaptable to various testing needs. Ultimately, this tool not only saves time but also enhances the reliability of your application through comprehensive testing. -
43
MakerSuite
Google
MakerSuite is a platform designed to streamline the workflow process. It allows you to experiment with prompts, enhance your dataset using synthetic data, and effectively adjust custom models. Once you feel prepared to transition to coding, MakerSuite enables you to export your prompts into code compatible with various programming languages and frameworks such as Python and Node.js. This seamless integration makes it easier for developers to implement their ideas and improve their projects. -
44
dbForge Data Generator for MySQL
Devart
$89.95dbForge Data generator for MySQL is an advanced GUI tool that allows you to create large volumes of realistic test data. The tool contains a large number of predefined data generation tools with customizable configuration options. These allow you to populate MySQL databases with meaningful data. -
45
KopiKat
KopiKat
0KopiKat, a revolutionary tool for data augmentation, improves the accuracy and efficiency of AI models by modifying the network architecture. KopiKat goes beyond the standard methods of data enhancement by creating a photorealistic copy while preserving all data annotations. You can change the original image's environment, such as the weather, seasons, lighting, etc. The result is an extremely rich model, whose quality and variety are superior to those created using traditional data augmentation methods. -
46
Ragas
Ragas
FreeRagas is a comprehensive open-source framework aimed at testing and evaluating applications that utilize Large Language Models (LLMs). It provides automated metrics to gauge performance and resilience, along with the capability to generate synthetic test data that meets specific needs, ensuring quality during both development and production phases. Furthermore, Ragas is designed to integrate smoothly with existing technology stacks, offering valuable insights to enhance the effectiveness of LLM applications. The project is driven by a dedicated team that combines advanced research with practical engineering strategies to support innovators in transforming the landscape of LLM applications. Users can create high-quality, diverse evaluation datasets that are tailored to their specific requirements, allowing for an effective assessment of their LLM applications in real-world scenarios. This approach not only fosters quality assurance but also enables the continuous improvement of applications through insightful feedback and automatic performance metrics that clarify the robustness and efficiency of the models. Additionally, Ragas stands as a vital resource for developers seeking to elevate their LLM projects to new heights. -
47
RNDGen
RNDGen
FreeRNDGen Random Data Generator, a user-friendly tool to generate test data, is free. The data creator customizes an existing data model to create a mock table structure that meets your needs. Random Data Generator is also known as dummy data, csv, sql, or mock data. Data Generator by RNDGen lets you create dummy data that is representative of real-world scenarios. You can choose from a variety of fake data fields, including name, email address, zip code, location and more. You can customize generated dummy information to meet your needs. With just a few mouse clicks, you can generate thousands of fake rows of data in different formats including CSV SQL, JSON XML Excel. -
48
NVIDIA Nemotron
NVIDIA
NVIDIA has created the Nemotron family of open-source models aimed at producing synthetic data specifically for training large language models (LLMs) intended for commercial use. Among these, the Nemotron-4 340B model stands out as a key innovation, providing developers with a robust resource to generate superior quality data while also allowing for the filtering of this data according to multiple attributes through a reward model. This advancement not only enhances data generation capabilities but also streamlines the process of training LLMs, making it more efficient and tailored to specific needs. -
49
Latitude
Latitude
$0Latitude is a comprehensive platform for prompt engineering, helping product teams design, test, and optimize AI prompts for large language models (LLMs). It provides a suite of tools for importing, refining, and evaluating prompts using real-time data and synthetic datasets. The platform integrates with production environments to allow seamless deployment of new prompts, with advanced features like automatic prompt refinement and dataset management. Latitude’s ability to handle evaluations and provide observability makes it a key tool for organizations seeking to improve AI performance and operational efficiency. -
50
Apheris
Apheris
Apheris serves as a collaborative platform that allows organizations to work together on distributed data in a manner that is secure, private, and adheres to regulatory standards. By utilizing the Apheris Compute Gateway in conjunction with your data, machine learning and analytics processes occur directly at the data source, preventing any movement or direct accessibility of the data, thereby preserving its inherent value. This innovative methodology resolves common issues associated with data silos that arise from geographical, regulatory, or organizational constraints, as well as situations where data is too sensitive or expensive to transport. Unlike other methods such as synthetic data generation, encryption, or data clean rooms—which may compromise the validity of results, introduce risks of data breaches, or lack scalability—Apheris employs a federated approach to develop models across entire data cohorts without transferring any actual data. With a foundation built on governance, security, and privacy, Apheris guarantees compliance with regulations from the outset, enabling organizations to leverage their data assets more effectively. Ultimately, this unique strategy not only enhances data usability but also instills confidence among stakeholders regarding data protection and regulatory adherence.