Google Cloud BigQuery
BigQuery is a serverless, multicloud data warehouse that makes working with all types of data effortless, allowing you to focus on extracting valuable business insights quickly. As a central component of Google’s data cloud, it streamlines data integration, enables cost-effective and secure scaling of analytics, and offers built-in business intelligence for sharing detailed data insights. With a simple SQL interface, it also supports training and deploying machine learning models, helping to foster data-driven decision-making across your organization. Its robust performance ensures that businesses can handle increasing data volumes with minimal effort, scaling to meet the needs of growing enterprises.
Gemini within BigQuery brings AI-powered tools that enhance collaboration and productivity, such as code recommendations, visual data preparation, and intelligent suggestions aimed at improving efficiency and lowering costs. The platform offers an all-in-one environment with SQL, a notebook, and a natural language-based canvas interface, catering to data professionals of all skill levels. This cohesive workspace simplifies the entire analytics journey, enabling teams to work faster and more efficiently.
Learn more
AnalyticsCreator
Accelerate your data journey with AnalyticsCreator—a metadata-driven data warehouse automation solution purpose-built for the Microsoft data ecosystem. AnalyticsCreator simplifies the design, development, and deployment of modern data architectures, including dimensional models, data marts, data vaults, or blended modeling approaches tailored to your business needs.
Seamlessly integrate with Microsoft SQL Server, Azure Synapse Analytics, Microsoft Fabric (including OneLake and SQL Endpoint Lakehouse environments), and Power BI. AnalyticsCreator automates ELT pipeline creation, data modeling, historization, and semantic layer generation—helping reduce tool sprawl and minimizing manual SQL coding.
Designed to support CI/CD pipelines, AnalyticsCreator connects easily with Azure DevOps and GitHub for version-controlled deployments across development, test, and production environments. This ensures faster, error-free releases while maintaining governance and control across your entire data engineering workflow.
Key features include automated documentation, end-to-end data lineage tracking, and adaptive schema evolution—enabling teams to manage change, reduce risk, and maintain auditability at scale. AnalyticsCreator empowers agile data engineering by enabling rapid prototyping and production-grade deployments for Microsoft-centric data initiatives.
By eliminating repetitive manual tasks and deployment risks, AnalyticsCreator allows your team to focus on delivering actionable business insights—accelerating time-to-value for your data products and analytics initiatives.
Learn more
AnzoGraph DB
AnzoGraph DB boasts an extensive array of analytical features that can significantly improve your analytical framework. Check out this video to discover how AnzoGraph DB operates as a Massively Parallel Processing (MPP) native graph database specifically designed for data harmonization and analytics. This horizontally scalable graph database is optimized for online analytics and tackling data harmonization issues. Addressing challenges related to linked data, AnzoGraph DB stands out as a leading analytical graph database in the market. It offers robust online performance suitable for enterprise-scale graph applications, ensuring efficiency and speed. AnzoGraph DB employs familiar SPARQL*/OWL for semantic graphs, while also accommodating Labeled Property Graphs (LPGs). Its vast array of analytical, machine learning, and data science tools empowers users to uncover new insights at remarkable speed and scale. By prioritizing context and relationships among data, you can enhance your analysis significantly. Additionally, the database enables ultra-fast data loading and execution of analytical queries, making it an invaluable asset for any data-driven organization.
Learn more
Qrvey
Qrvey is the only solution for embedded analytics with a built-in data lake.
Qrvey saves engineering teams time and money with a turnkey solution connecting your data warehouse to your SaaS application.
Qrvey’s full-stack solution includes the necessary components so that your engineering team can build less software in-house.
Qrvey is built for SaaS companies that want to offer a better multi-tenant analytics experience.
Qrvey's solution offers:
- Built-in data lake powered by Elasticsearch
- A unified data pipeline to ingest and analyze any type of data
- The most embedded components - all JS, no iFrames
- Fully personalizable to offer personalized experiences to users
With Qrvey, you can build less software and deliver more value.
Learn more