What Integrates with Spark NLP?
Find out what Spark NLP integrations exist in 2025. Learn what software and services currently integrate with Spark NLP, and sort them by reviews, cost, features, and more. Below is a list of products that Spark NLP currently integrates with:
-
1
TensorFlow
TensorFlow
Free 2 RatingsTensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process. -
2
Facebook
Meta
Free 22 RatingsFacebook stands as the biggest social networking platform globally. We develop technologies that enable individuals to engage with their friends and family, discover communities, and expand their businesses. Inspired by the remarkable ways in which people support one another during challenging times, we see examples ranging from fundraising efforts to lifesaving assistance shared in posts or through blood donation sign-ups. The Facebook app simplifies the process of connecting with loved ones and finding new acquaintances, thanks to features such as Groups, Watch, and Marketplace that cater to shared interests. These tools not only foster personal connections but also create opportunities for communal growth and support. -
3
OpenAI aims to guarantee that artificial general intelligence (AGI)—defined as highly autonomous systems excelling beyond human capabilities in most economically significant tasks—serves the interests of all humanity. While we intend to develop safe and advantageous AGI directly, we consider our mission successful if our efforts support others in achieving this goal. You can utilize our API for a variety of language-related tasks, including semantic search, summarization, sentiment analysis, content creation, translation, and beyond, all with just a few examples or by clearly stating your task in English. A straightforward integration provides you with access to our continuously advancing AI technology, allowing you to explore the API’s capabilities through these illustrative completions and discover numerous potential applications.
-
4
At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
-
5
The Java™ Programming Language is designed as a versatile, concurrent, and strongly typed object-oriented language that utilizes a class-based structure. Typically, it is translated into bytecode that adheres to the specifications laid out in the Java Virtual Machine Specification. In this language, developers write source code in standard text files that conclude with the .java suffix. These source files are subsequently transformed into .class files through the use of the javac compiler. Unlike native processor code, a .class file comprises bytecodes, which serve as the machine language understood by the Java Virtual Machine (Java VM). To execute an application, the java launcher tool creates an instance of the Java Virtual Machine, allowing the compiled bytecode to run seamlessly. This process exemplifies the efficiency and portability that Java offers across various computing environments.
-
6
BERT is a significant language model that utilizes a technique for pre-training language representations. This pre-training process involves initially training BERT on an extensive dataset, including resources like Wikipedia. Once this foundation is established, the model can be utilized for diverse Natural Language Processing (NLP) applications, including tasks such as question answering and sentiment analysis. Additionally, by leveraging BERT alongside AI Platform Training, it becomes possible to train various NLP models in approximately half an hour, streamlining the development process for practitioners in the field. This efficiency makes it an appealing choice for developers looking to enhance their NLP capabilities.
-
7
spaCy
spaCy
FreespaCy is crafted to empower users in practical applications, enabling the development of tangible products and the extraction of valuable insights. The library is mindful of your time, striving to minimize any delays in your workflow. Installation is straightforward, and the API is both intuitive and efficient to work with. spaCy is particularly adept at handling large-scale information extraction assignments. Built from the ground up using meticulously managed Cython, it ensures optimal performance. If your project requires processing vast datasets, spaCy is undoubtedly the go-to library. Since its launch in 2015, it has established itself as a benchmark in the industry, supported by a robust ecosystem. Users can select from various plugins, seamlessly integrate with machine learning frameworks, and create tailored components and workflows. It includes features for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and much more. Its architecture allows for easy customization, which facilitates adding unique components and attributes. Moreover, it simplifies model packaging, deployment, and the overall management of workflows, making it an invaluable tool for any data-driven project. -
8
Scala
Scala
FreeScala seamlessly integrates both object-oriented and functional programming paradigms into a single, elegant high-level language. With its static type system, Scala minimizes the likelihood of errors in intricate applications, while its compatibility with JVM and JavaScript allows developers to create efficient systems that can leverage extensive libraries. The Scala compiler is adept in managing static types, meaning that in most instances, you don't need to specify variable types; its robust type inference handles this automatically. Structural data types in Scala are represented by case classes, which automatically provide well-defined methods for toString, equals, and hashCode, in addition to enabling deconstruction through pattern matching. Moreover, in Scala, functions are treated as first-class citizens, allowing for the creation of anonymous functions using a streamlined syntax. This versatility makes Scala an appealing choice for developers seeking a language that combines the best of both programming worlds. -
9
R
The R Foundation
FreeR is a comprehensive environment and programming language tailored for statistical analysis and graphical representation. As a part of the GNU project, it shares similarities with the S language, which was originally designed by John Chambers and his team at Bell Laboratories, now known as Lucent Technologies. Essentially, R serves as an alternative implementation of S, and while there are notable distinctions between the two, a significant amount of S code can be executed in R without modification. This versatile language offers a broad spectrum of statistical methods, including both linear and nonlinear modeling, classical statistical tests, time-series analytics, classification, and clustering, among others, and it boasts a high level of extensibility. The S language is frequently utilized in research focused on statistical methodologies, and R presents an Open Source avenue for engaging in this field. Moreover, one of R's key advantages lies in its capability to generate high-quality publication-ready graphics, facilitating the inclusion of mathematical symbols and formulas as needed, which enhances its usability for researchers and analysts alike. Ultimately, R continues to be a powerful tool for those seeking to explore and visualize data effectively. -
10
APIFuzzer
PyPI
FreeAPIFuzzer analyzes your API specifications and systematically tests the fields to ensure your application can handle modified parameters, all without the need for programming. It allows you to import API definitions from either local files or remote URLs, supporting both JSON and YAML formats. Every HTTP method is accommodated, and it can fuzz the request body, query strings, path parameters, and request headers. Utilizing random mutations, it also integrates seamlessly with continuous integration systems. The tool can produce test reports in JUnit XML format and has the capability to send requests to alternative URLs. It supports HTTP basic authentication through configuration settings and stores reports of any failed tests in JSON format within a designated folder, thus ensuring that all results are easily accessible for review. Additionally, this enhances your ability to identify vulnerabilities and improve the reliability of your API. -
11
Conda
Conda
FreeConda serves as an open-source solution for managing packages, dependencies, and environments across various programming languages, including Python, R, Ruby, Lua, Scala, Java, JavaScript, C/C++, Fortran, and others. This versatile system operates seamlessly on multiple platforms such as Windows, macOS, Linux, and z/OS. With the ability to swiftly install, execute, and upgrade packages alongside their dependencies, Conda enhances productivity. It simplifies the process of creating, saving, loading, and switching between different environments on your device. Originally designed for Python applications, Conda's capabilities extend to packaging and distributing software for any programming language. Acting as an efficient package manager, it aids users in locating and installing the packages they require. If you find yourself needing a package that depends on an alternate Python version, there’s no need to switch to a different environment manager; Conda fulfills that role as well. You can effortlessly establish an entirely separate environment to accommodate that specific version of Python, while still utilizing your standard version in your default environment. This flexibility makes Conda an invaluable tool for developers working with diverse software requirements. -
12
RoBERTa
Meta
FreeRoBERTa enhances the language masking approach established by BERT, where the model is designed to predict segments of text that have been deliberately concealed within unannotated language samples. Developed using PyTorch, RoBERTa makes significant adjustments to BERT's key hyperparameters, such as eliminating the next-sentence prediction task and utilizing larger mini-batches along with elevated learning rates. These modifications enable RoBERTa to excel in the masked language modeling task more effectively than BERT, resulting in superior performance in various downstream applications. Furthermore, we examine the benefits of training RoBERTa on a substantially larger dataset over an extended duration compared to BERT, incorporating both existing unannotated NLP datasets and CC-News, a new collection sourced from publicly available news articles. This comprehensive approach allows for a more robust and nuanced understanding of language. -
13
XLNet
XLNet
FreeXLNet introduces an innovative approach to unsupervised language representation learning by utilizing a unique generalized permutation language modeling objective. Furthermore, it leverages the Transformer-XL architecture, which proves to be highly effective in handling language tasks that require processing of extended contexts. As a result, XLNet sets new benchmarks with its state-of-the-art (SOTA) performance across multiple downstream language applications, such as question answering, natural language inference, sentiment analysis, and document ranking. This makes XLNet a significant advancement in the field of natural language processing. -
14
Flair
Flair
$18 per monthIntroducing Flair, the innovative AI design tool tailored for creating branded content and product photography. With Flair, you can produce stunning marketing materials in just seconds, and complete entire photoshoots in under a minute. The tool allows you to generate visuals that reflect your brand's unique style, offering a diverse library of upscale aesthetics or the option to craft a personalized moodboard for a truly customized look. Capture your products effortlessly, no matter the location, while ensuring your brand’s distinctive elements are meticulously maintained. Experience the future of design with Flair and elevate your marketing strategy. -
15
ELMO
ELMO
Are you in search of a unified HR information system (HRIS) to effectively oversee your organization's workforce, processes, and payroll? Our integrated cloud platform is designed to boost employee engagement, enhance operational efficiencies, and lower expenses. ELMO provides an extensive range of cloud-based HR, payroll, and time management software solutions that can be tailored to meet your organization's specific needs, all accessible from a single dashboard with one user interface. We aim to help your organization optimize its HR and payroll functions, leading to greater productivity and reduced costs. Additionally, our ISO certification underscores our dedication to security across all business levels, highlighting that security is a fundamental and continually evolving component of our operations and services. At ELMO, we recognize that our cloud HR and payroll solutions are crucial in empowering our clients to manage their most valuable assets effectively. By choosing ELMO, you're investing in a future where HR processes are seamless and efficient. -
16
Databricks Data Intelligence Platform
Databricks
The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights. -
17
Apache Spark
Apache Software Foundation
Apache Spark™ serves as a comprehensive analytics platform designed for large-scale data processing. It delivers exceptional performance for both batch and streaming data by employing an advanced Directed Acyclic Graph (DAG) scheduler, a sophisticated query optimizer, and a robust execution engine. With over 80 high-level operators available, Spark simplifies the development of parallel applications. Additionally, it supports interactive use through various shells including Scala, Python, R, and SQL. Spark supports a rich ecosystem of libraries such as SQL and DataFrames, MLlib for machine learning, GraphX, and Spark Streaming, allowing for seamless integration within a single application. It is compatible with various environments, including Hadoop, Apache Mesos, Kubernetes, and standalone setups, as well as cloud deployments. Furthermore, Spark can connect to a multitude of data sources, enabling access to data stored in systems like HDFS, Alluxio, Apache Cassandra, Apache HBase, and Apache Hive, among many others. This versatility makes Spark an invaluable tool for organizations looking to harness the power of large-scale data analytics. -
18
Whisper
OpenAI
We have developed and are releasing an open-source neural network named Whisper, which achieves levels of accuracy and resilience in English speech recognition that are comparable to human performance. This automatic speech recognition (ASR) system is trained on an extensive dataset comprising 680,000 hours of multilingual and multitask supervised information gathered from online sources. Our research demonstrates that leveraging such a comprehensive and varied dataset significantly enhances the system's capability to handle different accents, ambient noise, and specialized terminology. Additionally, Whisper facilitates transcription across various languages and provides translation into English from those languages. We are making available both the models and the inference code to support the development of practical applications and to encourage further exploration in the field of robust speech processing. The architecture of Whisper follows a straightforward end-to-end design, utilizing an encoder-decoder Transformer framework. The process begins with dividing the input audio into 30-second segments, which are then transformed into log-Mel spectrograms before being input into the encoder. By making this technology accessible, we aim to foster innovation in speech recognition technologies. -
19
ALBERT
Google
ALBERT is a self-supervised Transformer architecture that undergoes pretraining on a vast dataset of English text, eliminating the need for manual annotations by employing an automated method to create inputs and corresponding labels from unprocessed text. This model is designed with two primary training objectives in mind. The first objective, known as Masked Language Modeling (MLM), involves randomly obscuring 15% of the words in a given sentence and challenging the model to accurately predict those masked words. This approach sets it apart from recurrent neural networks (RNNs) and autoregressive models such as GPT, as it enables ALBERT to capture bidirectional representations of sentences. The second training objective is Sentence Ordering Prediction (SOP), which focuses on the task of determining the correct sequence of two adjacent text segments during the pretraining phase. By incorporating these dual objectives, ALBERT enhances its understanding of language structure and contextual relationships. This innovative design contributes to its effectiveness in various natural language processing tasks. -
20
Maven
Maven
The initial groups we launched filled up in mere hours. Sign up now to be added to the waitlist and guarantee your place in the upcoming cohort. Do you possess valuable insights to offer but feel uncertain about how to begin? Many content creators find themselves daunted by the multitude of factors, unforeseen challenges, and the extensive effort required to develop a multifaceted digital product like a cohort-based course. This is precisely why Maven is now open for applications to our latest cohort-based course titled How to Build a Cohort-Based Course (it's quite the concept). Our program is designed to enable anyone to participate without having their course ready yet, ensuring you’ll have a polished course to unveil by the end of six weeks. As a fully remote company, we are in the process of gathering a remarkable team of skilled individuals to transform online education. We are currently on the lookout for our inaugural engineers as we prepare to launch courses featuring an exceptional lineup of early instructors. Explore our available job openings and consider joining us on this exciting journey. -
21
T5
Google
We introduce T5, a model that transforms all natural language processing tasks into a consistent text-to-text format, ensuring that both inputs and outputs are text strings, unlike BERT-style models which are limited to providing either a class label or a segment of the input text. This innovative text-to-text approach enables us to utilize the same model architecture, loss function, and hyperparameter settings across various NLP tasks such as machine translation, document summarization, question answering, and classification, including sentiment analysis. Furthermore, T5's versatility extends to regression tasks, where it can be trained to output the textual form of a number rather than the number itself, showcasing its adaptability. This unified framework greatly simplifies the handling of diverse NLP challenges, promoting efficiency and consistency in model training and application.
- Previous
- You're on page 1
- Next