Fraud.net
Don't let fraud erode your bottom line, damage your reputation, or stall your growth. FraudNet's AI-driven platform empowers enterprises to stay ahead of threats, streamline compliance, and manage risk at scale—all in real-time. While fraudsters evolve tactics, our platform detects tomorrow's threats, delivering risk assessments through insights from billions of analyzed transactions.
Imagine transforming your fraud prevention with a single, robust platform: comprehensive screening for smoother onboarding and reduced risk exposure, continuous monitoring to proactively identify and block new threats, and precision fraud detection across channels and payment types with real-time, AI-powered risk scoring. Our proprietary machine learning models continuously learn and improve, identifying patterns invisible to traditional systems. Paired with our Data Hub of dozens of third-party data integrations, you'll gain unprecedented fraud and risk protection while slashing false positives and eliminating operational inefficiencies.
The impact is undeniable. Leading payment companies, financial institutions, innovative fintechs, and commerce brands trust our AI-powered solutions worldwide, and they're seeing dramatic results: 80% reduction in fraud losses and 97% fewer false positives. With our flexible no-code/low-code architecture, you can scale effortlessly as you grow.
Why settle for outdated fraud and risk management systems when you could be building resilience for future opportunities? See the Fraud.Net difference for yourself. Request your personalized demo today and discover how we can help you strengthen your business against threats while empowering growth.
Learn more
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
TensorFlow
TensorFlow is a comprehensive open-source machine learning platform that covers the entire process from development to deployment. This platform boasts a rich and adaptable ecosystem featuring various tools, libraries, and community resources, empowering researchers to advance the field of machine learning while allowing developers to create and implement ML-powered applications with ease. With intuitive high-level APIs like Keras and support for eager execution, users can effortlessly build and refine ML models, facilitating quick iterations and simplifying debugging. The flexibility of TensorFlow allows for seamless training and deployment of models across various environments, whether in the cloud, on-premises, within browsers, or directly on devices, regardless of the programming language utilized. Its straightforward and versatile architecture supports the transformation of innovative ideas into practical code, enabling the development of cutting-edge models that can be published swiftly. Overall, TensorFlow provides a powerful framework that encourages experimentation and accelerates the machine learning process.
Learn more
IBM Watson Studio
Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
Learn more